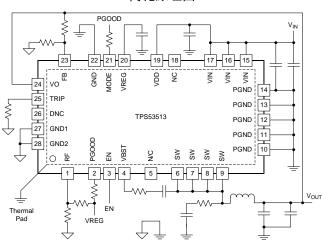


🕳 Order

Now

TPS53513

ZHCSBM9C - SEPTEMBER 2013-REVISED JUNE 2018


TPS53513 1.5V 至 **18V** (**4.5V** 至 **25V** 偏置) 输入, **8A** 单路同步降压 **SWIFT™** 转换器

1 特性

- 集成型 13.8mΩ 和 5.9mΩ MOSFET, 具有 8A 持续输出电流
- 支持所有陶瓷输出电容器
- 基准电压 600mV (耐受幅度 ±0.5%)
- 输出电压范围: 0.6V 至 5.5V
- D-CAP3™控制模式,此模式具有快速负载阶跃响 应
- 针对轻负载时高效率的自动跳跃 Eco-mode™模式
- 针对严格输出纹波和电压要求的强制连续传导模式 (FCCM)
- **8**个可在
- 250kHz 至 1MHz 之间选择的频率设置
- 预充电启动能力
- 内置输出放电电路
- 开漏电源正常输出
- 3.5mm × 4.5mm 28 引脚超薄型四方扁平无引线 (VQFN) 封装
- 使用 TPS53513 并借助 WEBENCH[®] 电源设计器 创建定制设计方案

2 应用

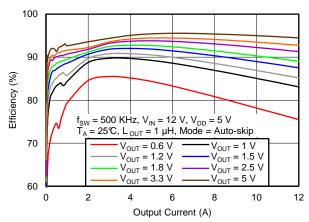
- 服务器和云计算负载点 (POL)
- 宽带、网络互联及光纤通信基础设施
- 输入输出 (I/O) 电源

简化原理图

3 说明

TPS53513器件是一款具有自适应导通时间 **D-CAP3** 控制模式的小尺寸同步降压转换器。此器件简单易用, 具有较少的外部组件数量,可适用于空间受限的电源系 统。

该器件具有高性能集成 MOSFET、精度为 0.5% 的 0.6V 电压基准和一个集成的升压开关。具有竞争力的特性包括极少的外部组件数量、快速的负载瞬态响应、自动跳跃模式操作、内部软启动控制,并且不需要补偿。


强制持续导通模式 (FCCM) 有助于满足高性能 DSP 和 FPGA 的严格电压调节精度要求。TPS53513 器件采 用 28 引脚 VQFN 封装,额定工作环境温度范围为 -40°C 到 +85°。

器件信息(1)

器件型号	封装	封装尺寸(标称值)
TPS53513	VQFN-CLIP (28)	4.50mm x 3.50mm

(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品 附录。

效率

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

8

9

11

12

11.3 11.4

11.5

1	特性	<u></u> 1
2	应用	1
3	说明	1
4	修订	历史记录 2
5	Pin	Configuration and Functions 3
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions5
	6.4	Thermal Information 5
	6.5	Electrical Characteristics 6
	6.6	Typical Characteristics 8
7	Deta	ailed Description 14
	7.1	Overview 14
	7.2	Functional Block Diagram 15
	7.3	Feature Description 16
	7.4	Device Functional Modes

4 修订历史记录

2

注: 之前版本的页码可能与当前版本有所不同。

Changes from Revision B (November 2014) to Revision C

•	已添加 WEBENCH 链接	. 1
•	Added content to Power-Good	22

Changes from Revision A (November 2013) to Revision B

•	Changed MODE pin configuration reference from "Table 3" to "Table 4" in the D-CAP3 Mode section	9
	布局部分、器件和文档支持部分以及机械、封装和可订购信息部分	1
•	已添加 引脚配置和功能 部分,处理额定值 表,特性 说明 部分、器件功能模式、应用和实施 部分、电源建议 部分、	

Changes from Original (September 2013) to Revision A

•	已添加 首页图表更新	. 1
•	Added updates to Pin Descriptions	. 3
•	Added 5-V LDO and VREG Start-Up section	16
•	Added Enable, Soft Start, and Mode Selection section	16
•	Added updates to Application Information section	24
•	Added Thermal Performance section	32

11.6 静电放电警告...... 33 11.7 术语表 33

Page

Page

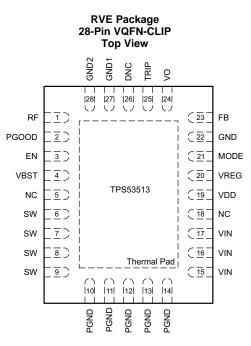
Page

10.2 Layout Example 31 10.3 Thermal Performance 32

XAS STRUMENTS

Application and Implementation 25

Power Supply Recommendations 29 10.1 Layout Guidelines 30


11.2 文档支持...... 33 接收文档更新通知 33

社区资源...... 33

www.ti.com.cn

5 Pin Configuration and Functions

Pin Functions

	PIN	/O ⁽¹⁾	DECODURTION	
NAME	NO.	1/0(1)	DESCRIPTION	
EN	3	I	The enable pin turns on the DC-DC switching converter.	
FB	23	I	V _{OUT} feedback input. Connect this pin to a resistor divider between the VOUT pin and GND.	
GND	22	G	This pin is the ground of internal analog circuitry and driver circuitry. Connect GND to the PGND plane with a short trace (For example, connect this pin to the thermal pad with a single trace and connect the thermal pad to PGND pins and PGND plane).	
GND1	27	I	Connect this pin to ground. GND1 is the input of unused internal circuitry and must connect to ground.	
GND2	28	I	Connect this pin to ground. GND2 is the input of unused internal circuitry and must connect to ground.	
MODE	21	I	I The MODE pin sets the forced continuous-conduction mode (FCCM) or Skip-mode operation. It also selects the ramp coefficient of D-CAP3 mode. — Not connected. These pins are floating internally.	
NC	5		Nations and These pipe are flecting internally	
NC	18		Not connected. These pins are noating internally.	
DNC	26	0	t connect. This pin is the output of unused internal circuitry and must be floating.	
	10			
	11			
PGND	12	G	These ground pins are connected to the return of the internal low-side MOSFET.	
	13			
	14			
PGOOD	2	0	Open-drain power-good status signal which provides startup delay after the FB voltage falls within the specified limits. After the FB voltage moves outside the specified limits, PGOOD goes low within 2 µs.	
RF	1	I	RF is the SW-frequency configuration pin. Connect this pin to a resistor divider between VREG and GND to program different SW frequency settings.	
	6			
CIA/	7	1/0	SW is the output quitching terminal of the neuron converter. Connect this his to the output is ductor	
SW	8	- I/O	SW is the output switching terminal of the power converter. Connect this pin to the output inductor.	
	9			

TPS53513 ZHCSBM9C-SEPTEMBER 2013-REVISED JUNE 2018

www.ti.com.cn

STRUMENTS

XAS

Pin Functions (continued)

PIN		1/O ⁽¹⁾	DESCRIPTION		
NAME	NO.	100	DESCRIPTION		
TRIP	25	I/O	TRIP is the OCL detection threshold setting pin. $I_{TRIP} = 10 \ \mu A$ at room temp, 3000 ppm/°C current is sourced and sets the OCL trip voltage. See the <i>Current Sense and Overcurrent Protection</i> section for detailed OCP setting.		
VBST	4	Ρ	VBST is the supply rail for the high-side gate driver (boost terminal). Connect the bootstrap capacitor from this pin to the SW node. Internally connected to VREG via bootstrap PMOS switch.		
VDD	19	Р	er-supply input pin for controller. Input of the VREG LDO. The input range is from 4.5 to 25 V.		
	15				
VIN	16	Р	VIN is the conversion power-supply input pins.		
	17				
VREG	20	0	VREG is the 5-V LDO output. This voltage supplies the internal circuitry and gate driver.		
VO	24	I	VOUT voltage input to the controller.		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
	EN		-0.3	7.7	
Input voltage range ⁽²⁾	SW	DC	-3	30	
	300	Transient < 10 ns	-5	32	
	VBST		-0.3	36	
	VBST ⁽³⁾	VBST ⁽³⁾ VBST when transient < 10 ns		6	V
	VBST when transi			38	
	VDD		-0.3	-0.3 28	
Output voltage range	VIN		-0.3	30	
	VO, FB, MODE, R	RF	-0.3	6	
	PGOOD		-0.3	7.7	N/
	VREG, TRIP		-0.3	6	V
Junction temperature, T _J		-40	150	°C	
Storage temperature, T _{stg}			-55	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to network ground terminal.

(3) Voltage values are with respect to the SW terminal.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{(2)}$	±1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
	EN	-0.1	7	
	SW	-3	27	
Input voltage range	VBST	-0.1	28	
	VBST ⁽¹⁾	-0.1	5.5	V
	VDD	4.5	25	
	VIN	1.5	18	
	VO, FB, MODE, RF	-0.1	5.5	
Output voltage range	PGOOD	-0.1	7	V
	VREG, TRIP	-0.1	5.5	V
T _A	Operating free-air temperature	-40	85	°C

(1) Voltage values are with respect to the SW pin.

6.4 Thermal Information

		TPS53513	
	THERMAL METRIC ⁽¹⁾	RVE (VQFN-CLIP)	UNIT
		28 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance ⁽²⁾	37.5	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance ⁽³⁾	34.1	
$R_{\theta JB}$	Junction-to-board thermal resistance ⁽⁴⁾	18.1	°C/W
ΨJT	Junction-to-top characterization parameter ⁽⁵⁾	1.8	°C/VV
Ψ _{JB}	Junction-to-board characterization parameter ⁽⁶⁾	18.1	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance ⁽⁷⁾	2.2	

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(5) The junction-to-top characterization parameter, ψ JT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining R_{θ JA}, using a procedure described in JESD51-2a (sections 6 and 7).

(6) The junction-to-board characterization parameter, ψ JB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining R_{θ JA}, using a procedure described in JESD51-2a (sections 6 and 7).

(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

ÈXAS **ISTRUMENTS**

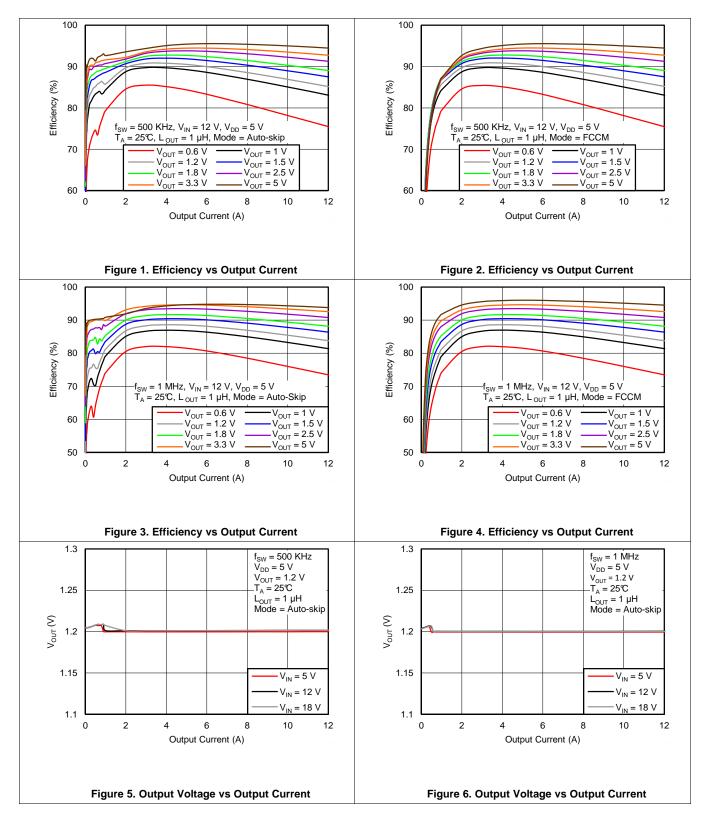
www.ti.com.cn

6.5 Electrical Characteristics

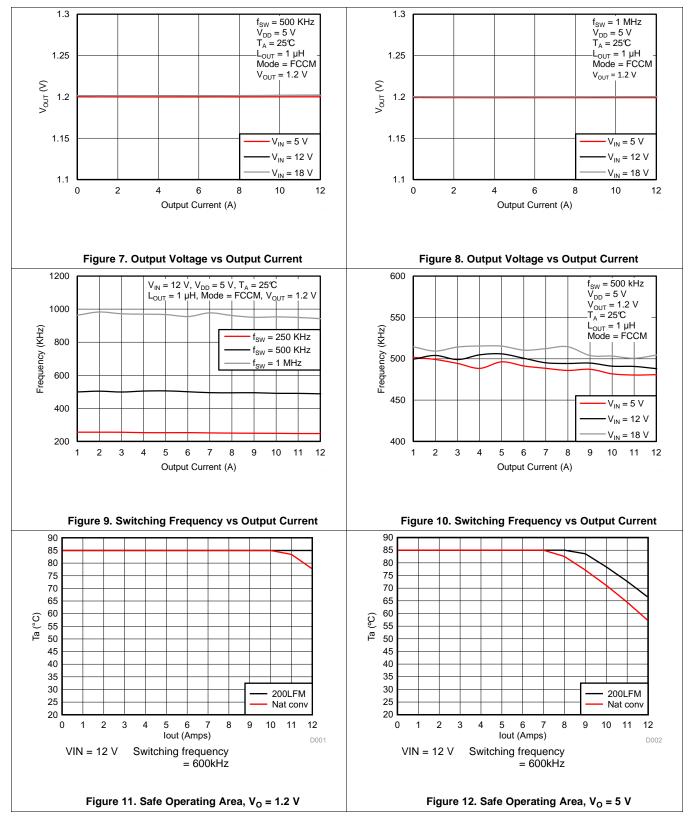
over operating free-air temperature range, VREG = 5 V, EN = 5 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
SUPPLY C	URRENT						
I _{VDD}	VDD bias current	$T_A = 25^{\circ}C$, No load Power conversion enabled (no switching)		1350	1850	μA	
IVDDSTBY	VDD standby current	$T_A = 25^{\circ}C$, No load Power conversion disabled		850	1150	μA	
I _{VIN(leak)}	VIN leakage current	V _{EN} = 0 V			0.5	μA	
VREF OUT	PUT						
V _{VREF}	Reference voltage	FB w/r/t GND, $T_A = 25^{\circ}C$	597	600	603	mV	
V _{VREFTOL}	Reference voltage tolerance	FB w/r/t GND, $T_J = 0^{\circ}C$ to $85^{\circ}C$ FB w/r/t GND, $T_J = -40^{\circ}C$ to $85^{\circ}C$	-0.6% -0.7%		0.5% 0.5%		
OUTPUT V		FB W//(GND, T) = -40 C to 85 C	-0.7 /0		0.3 %		
	FB input current	V _{FB} = 600 mV		50	100	nA	
I _{FB} I _{VODIS}	VO discharge current	$V_{FB} = 0.00 \text{ mV}$ $V_{VO} = 0.5 \text{ V}$, Power Conversion Disabled	10	12	100	mA	
SMPS FRE			10	12	15		
		V _{IN} = 12 V, V _{VO} = 3.3 V, R _{DR} < 0.041		250			
		$V_{IN} = 12 \text{ V}, V_{VO} = 3.3 \text{ V}, R_{DR} = 0.096$		300			
		$V_{IN} = 12 \text{ V}, V_{VO} = 3.3 \text{ V}, R_{DR} = 0.16$		400			
		$V_{IN} = 12 \text{ V}, V_{VO} = 3.3 \text{ V}, R_{DR} = 0.229$		500			
f _{SW}	VO switching frequency ⁽¹⁾	$V_{IN} = 12 \text{ V}, V_{VO} = 3.3 \text{ V}, R_{DR} = 0.297$		600		kHz	
		$V_{IN} = 12 \text{ V}, V_{VO} = 3.3 \text{ V}, R_{DR} = 0.375$	750				
		$V_{IN} = 12 V, V_{VQ} = 3.3 V, R_{DR} = 0.461$		850		-	
		$V_{\rm IN} = 12$ V, $V_{\rm VO} = 3.3$ V, $R_{\rm DR} > 0.557$		1000			
t _{ON(min)}	Minimum on-time	$T_{A} = 25^{\circ}C^{(2)}$		60		ns	
t _{OFF(min)}	Minimum off-time	$T_A = 25^{\circ}C$	175	240	310	ns	
()	BOOTSTRAP SW			-			
V _F	Forward Voltage	$V_{VREG-VBST}$, $T_A = 25^{\circ}$ C, $I_F = 10 \text{ mA}$		0.15	0.25	V	
I _{VBST}	VBST leakage current	$T_A = 25^{\circ}C, V_{VBST} = 33 V, V_{SW} = 28 V$		0.01	1.5	μA	
LOGIC THE	RESHOLD						
V _{ENH}	EN enable threshold voltage		1.3	1.4	1.5	V	
V _{ENL}	EN disable threshold voltage		1.1	1.2	1.3	V	
V _{ENHYST}	EN hysteresis voltage			0.22		V	
V _{ENLEAK}	EN input leakage current		-1	0	1	μA	
SOFT STA	RT				I		
t _{SS}	Soft-start time			1		ms	
PGOOD CO	OMPARATOR		·				
		PGOOD in from higher	104%	108%	111%		
V		PGOOD in from lower	89%	92%	96%		
V _{PGTH}	VDDQ PGOOD threshold	PGOOD out to higher	113%	116%	120%		
		PGOOD out to lower	80%	84%	87%		
I _{PG}	PGOOD sink current	V _{PGOOD} = 0.5 V	4	6		mA	
		Delay for PGOOD going in	0.8	1.0	1.2	ms	
t _{PGDLY}	PGOOD delay time	Delay for PGOOD coming out		2		μs	
I _{PGLK}	PGOOD leakage current	V _{PGOOD} = 5 V	-1	0	1	μA	

Resistor divider ratio (R_{DR}) is described in Equation 1.
 Specified by design. Not production tested.

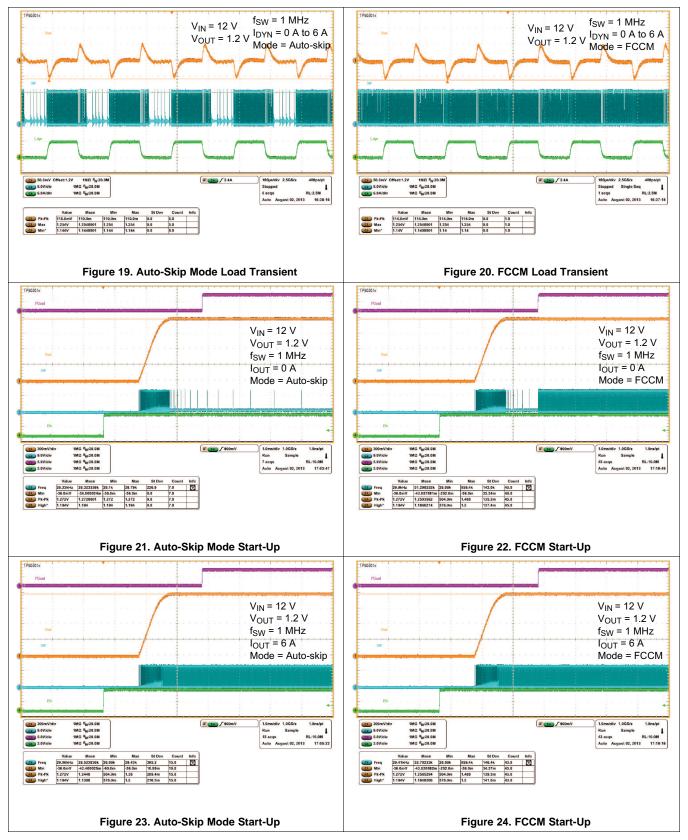

Electrical Characteristics (continued)

over operating free-air temperature range, VREG = 5 V, EN = 5 V (unless otherwise noted)


PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DETECTION					
TRIP pin resistance range		20		50	kΩ
	R _{TRIP} = 34.8 kΩ	6.2	8.0	9.8	•
Current limit threshold, valley	R _{TRIP} = 25.5 kΩ	4.2	6.2	8.2	A
Negative current limit threshold,	R _{TRIP} = 34.8 kΩ	-10.5	-7.9	-5.3	•
valley	R _{TRIP} = 25.5 kΩ	-8.7	-6.1	-3.5	A
Zero cross detection offset			0		mV
DNS					
VREG undervoltage-lockout	Wake-up	3.25	3.34	3.41	V
(UVLO) threshold voltage	Shutdown	3.00	3.12	3.19	V
	Wake-up (default)	4.15	4.25	4.35	V
VDD UVLO threshold voltage	Shutdown	3.95	4.05	4.15	V
Overvoltage-protection (OVP) threshold voltage	OVP detect voltage	116%	120%	124%	
OVP propagation delay	With 100-mV overdrive		300		ns
Undervoltage-protection (UVP) threshold voltage	UVP detect voltage	64%	68%	71%	
UVP delay	UVP filter delay		1		ms
SHUTDOWN					
Thermal chutdown threshold $\binom{2}{2}$	Shutdown temperature		140		°C
	Hysteresis		40		
AGE					
LDO output voltage	$V_{IN} = 12 \text{ V}, \text{ I}_{LOAD} = 10 \text{ mA}$	4.65	5	5.45	V
LDO low droop drop-out voltage	$V_{IN} = 4.5 \text{ V}, I_{LOAD} = 30 \text{ mA}, T_A = 25^{\circ}\text{C}$			365	mV
LDO overcurrent limit	$V_{IN} = 12 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}$	170	200		mA
MOSFETS					
High-side MOSFET on- resistance	T _A = 25°C		13.8	15.5	mΩ
Low-side MOSFET on- resistance	$T_A = 25^{\circ}C$		5.9	7.0	mΩ
	TRIP pin resistance range Current limit threshold, valley Negative current limit threshold, valley Zero cross detection offset DNS VREG undervoltage-lockout (UVLO) threshold voltage VDD UVLO threshold voltage Overvoltage-protection (OVP) threshold voltage OVP propagation delay Undervoltage-protection (UVP) threshold voltage UVP delay SHUTDOWN Thermal shutdown threshold ⁽²⁾ AGE LDO output voltage LDO low droop drop-out voltage LDO overcurrent limit MOSFETS High-side MOSFET on-resistance Low-side MOSFET on-	$\begin{tabular}{ c c c c c } \hline TRIP pin resistance range & $$R_{TRIP} = 34.8 \ k\Omega$ \\ \hline R_{TRIP} = 25.5 \ k\Omega$ \\ \hline R_{TRIP} = 25.5 \ k\Omega$ \\ \hline R_{TRIP} = 34.8 \ k\Omega$ \\ \hline R_{TRIP} = 25.5 \ k\Omega$ \\ \hline Zero cross detection offset & $$P_{TRIP} = 25.5 \ k\Omega$ \\ \hline Zero cross detection offset & $$P_{TRIP} = 25.5 \ k\Omega$ \\ \hline Zero cross detection offset & $$P_{TRIP} = 25.5 \ k\Omega$ \\ \hline Zero cross detection offset & $$P_{TRIP} = 25.5 \ k\Omega$ \\ \hline Zero cross detection offset & $$P_{TRIP} = 25.5 \ k\Omega$ \\ \hline Zero cross detection offset & $$P_{TRIP} = 25.5 \ k\Omega$ \\ \hline Zero cross detection offset & $$P_{TRIP} = 25.5 \ k\Omega$ \\ \hline Zero cross detection offset & $$P_{TRIP} = 25.5 \ k\Omega$ \\ \hline Zero cross detection offset & $$P_{TRIP} = 25.5 \ k\Omega$ \\ \hline Zero cross detection offset & $$P_{TRIP} = 25.5 \ k\Omega$ \\ \hline Zero cross detection offset & $$P_{TRIP} = 25.5 \ k\Omega$ \\ \hline Zero cross detection offset & $$P_{TRIP} = 25.5 \ k\Omega$ \\ \hline Zero cross detection offset & $$P_{TRIP} = 25.5 \ k\Omega$ \\ \hline DO treshold voltage & $$Wake-up$ (default) \\ \hline Shutdown & $$Wake-up$ (default) \\ \hline Shutdown & $$OVP detect voltage \\ \hline OVP propagation delay & $$With 100-mV overdrive \\ Undervoltage-protection (UVP) & $$UVP detect voltage \\ \hline UVP delay & $$UVP filter delay \\ \hline SHUTDOWN \\ \hline Thermal shutdown threshold(2) & $$Shutdown temperature \\ \hline Hysteresis \\ \hline AGE \\ \hline LDO output voltage & $$V_{IN} = 12 \ V, \ I_{LOAD} = 10 \ mA \\ \hline LDO low droop drop-out voltage & $$V_{IN} = 12 \ V, \ I_{LOAD} = 30 \ mA, \ T_{A} = 25^{\circ}C \\ \hline MOSFETS \\ \hline High-side MOSFET \ On- \\ \hline resistance & $$T_{A} = 25^{\circ}C$ \\ \hline Low-side MOSFET \ On- \\ \hline resistance & $$T_{A} = 25^{\circ}C$ \\ \hline \end{tabular}$	$\begin{array}{ c c c c } \hline {\sf TRIP} \mbox{ pin resistance range} & 20 \\ \hline {\sf Current limit threshold, valley} & ${\sf R}_{\sf TRIP} = 34.8 \ k\Omega & 6.2 \\ \hline {\sf R}_{\sf TRIP} = 25.5 \ k\Omega & 4.2 \\ \hline {\sf R}_{\sf TRIP} = 25.5 \ k\Omega & -10.5 \\ \hline {\sf R}_{\sf TRIP} = 34.8 \ k\Omega & -10.5 \\ \hline {\sf NS} & \hline \\ \hline {\sf VDC UVLO threshold voltage} & \hline \\ \hline {\sf VDS UVLO threshold voltage} & \hline \\ \hline {\sf VDD UVLO threshold voltage} & \hline \\ \hline {\sf VDD UVLO threshold voltage} & \hline \\ \hline {\sf VDP threshold voltage} & \hline \\ \hline {\sf OVP propagation delay} & With 100-mV overdrive & \hline \\ \hline {\sf UVP delay} & UVP delay & UVP filter delay & \hline \\ \hline {\sf UVP delay} & UVP filter delay & \hline \\ \hline {\sf SHUTDOWN} & \hline \\ \hline {\sf SHUTDOWN} & \hline \\ \hline {\sf SHUTDOWN} & \hline \\ \hline {\sf AGE} & \hline \\ \hline {\sf LDO output voltage} & V_{\rm IN} = 12 \ V, \ {\sf I_{LOAD} = 10 \ mA} & 4.65 \\ \hline \\ {\sf LDO low droop drop-out voltage} & V_{\rm IN} = 4.5 \ V, \ {\sf I_{LOAD} = 30 \ mA}, \ {\sf T_A} = 25^{\circ}C & \hline \\ \hline \\ \hline {\sf MOSFETS} & \hline \\ \hline {\sf High-side MOSFET \ on-resistance} & \hline \\ \hline {\sf Low-side MOSFET \ on-resistance} & \hline \\ \hline \\ \hline {\sf Low-side MOSFET \ on- \hline \\ \hline {\sf TA} = 25^{\circ}C & \hline \hline \\ \hline \end{array}$	$\begin{array}{ c c c c c } \hline TRIP \mbox{pin resistance range} & 20 \\ \hline Current limit threshold, valley \\ \hline Current limit threshold, valley \\ \hline R_{TRIP} = 34.8 \ k\Omega & -10.5 & -7.9 \\ \hline R_{TRIP} = 25.5 \ k\Omega & -8.7 & -6.1 \\ \hline R_{TRIP} = 25.5 \ k\Omega & -8.7 & -6.1 \\ \hline Zero \ cross \ detection \ offset & 0 \\ \hline DNS \\ \hline \hline VREG \ undervoltage-lockout \\ (UVLO) \ threshold \ voltage & \\ \hline VDD \ UVLO \ threshold \ voltage & \\ \hline VDD \ UVLO \ threshold \ voltage & \\ \hline VDD \ UVLO \ threshold \ voltage & \\ \hline VDD \ UVLO \ threshold \ voltage & \\ \hline Overvoltage-protection \ (OVP) \\ threshold \ voltage & \\ \hline OVP \ detect \ voltage & \\ \hline UVP \ detage \ DVP \ detect \ voltage & \\ \hline UVP \ detage & \\ \hline UVP \ detage & \\ \hline UVP \ detect \ voltage & \\ \hline UVP \ detage \ DVP \ detect \ voltage & \\ \hline UVP \ detage \ DVP \ detect \ voltage & \\ \hline OVP \ detect \ voltage & \\ \hline UVP \ detage \ DVP \ detect \ voltage & \\ \hline UVP \ detage \ DVP \ detect \ voltage & \\ \hline UVP \ detage \ DVP \ detect \ voltage & \\ \hline UVP \ detage \ DVP \ detect \ voltage & \\ \hline UVP \ detage \ DVP \ detect \ voltage \ \\ \hline UVP \ detage \ DVP \ detect \ voltage \ \\ \hline UVP \ detage \ DVP \ detect \ voltage \ \\ \hline UVP \ detage \ \\ \hline UDO \ undurvoltage \ \\ \hline UDO \ undurvoltage \ \\ \hline UVP \ detage \ \\ \hline \\ \hline \hline Thermal \ shutdown \ threshold \ \\ \hline \hline \\ \hline Thermal \ shutdown \ threshold \ \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

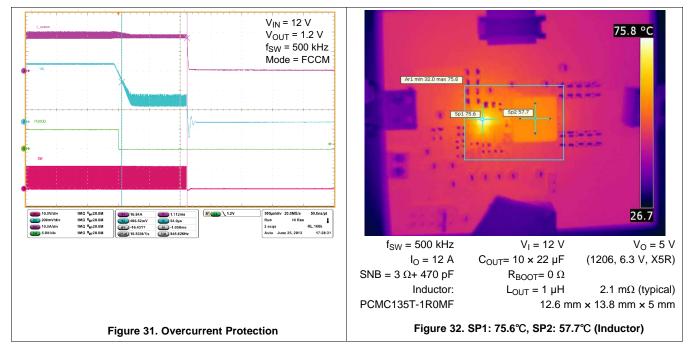
6.6 Typical Characteristics

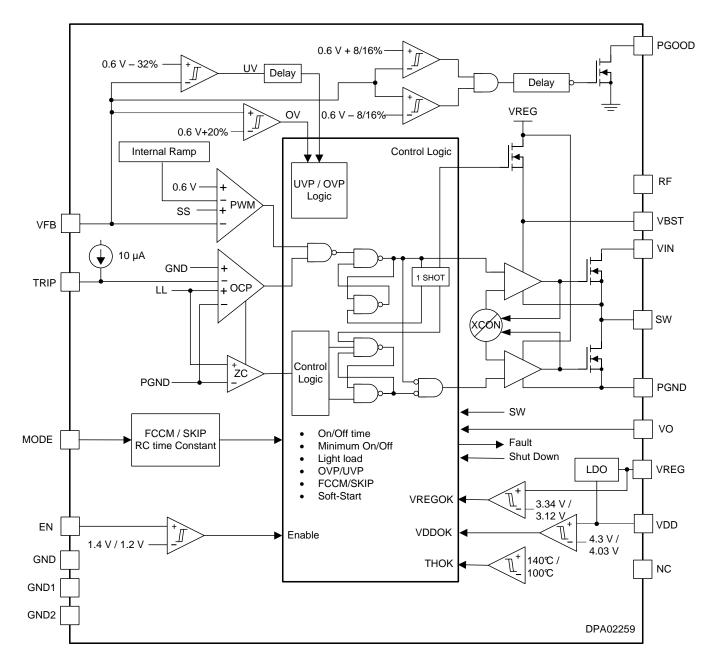




TPS53513 ZHCSBM9C-SEPTEMBER 2013-REVISED JUNE 2018


www.ti.com.cn




7 Detailed Description

7.1 Overview

The TPS53513 device is a high-efficiency, single-channel, synchronous-buck converter. The device suits lowoutput voltage point-of-load applications with 8-A or lower output current in computing and similar digital consumer applications. The TPS53513 device features proprietary D-CAP3 mode control combined with adaptive on-time architecture. This combination builds modern low-duty-ratio and ultra-fast load-step-response DC-DC converters in an ideal fashion. The output voltage ranges from 0.6 V to 5.5 V. The conversion input voltage ranges from 1.5 V to 18 V and the VDD input voltage ranges from 4.5 V to 25 V. The D-CAP3 mode uses emulated current information to control the modulation. An advantage of this control scheme is that it does not require a phase-compensation network outside which makes the device easy-to-use and also allows low-external component count. Adaptive on-time control tracks the preset switching frequency over a wide range of input and output voltage while increasing switching frequency as needed during load-step transient.

7.2 Functional Block Diagram

TPS53513 ZHCSBM9C-SEPTEMBER 2013-REVISED JUNE 2018

www.ti.com.cn

7.3 Feature Description

7.3.1 5-V LDO and VREG Start-Up

The TPS53513 device has an internal 5-V LDO feature using input from VDD and output to VREG. When the VDD voltage rises above 2.8 V, the internal LDO is enabled and outputs voltage to the VREG pin. The VREG voltage provides the bias voltage for the internal analog circuitry. The VREG voltage also provides the supply voltage for the gate drives.

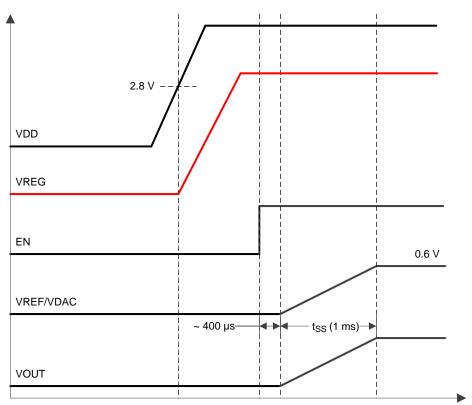


Figure 33. Power-up Sequence Waveforms

7.3.2 Enable, Soft Start, and Mode Selection

The internal LDO regulator starts immediately and regulates to 5 V at the VREG pin.

When the EN pin voltage rises above the enable threshold voltage (typically 1.4 V), the controller enters its startup sequence. The controller then uses the first 400 μ s to calibrate the switching frequency setting resistance attached to the RF pin and stores the switching frequency code in internal registers. During this period, the MODE pin also senses the resistance attached to this pin to determine the operation mode. In the second phase, an internal DAC starts ramping up the reference voltage from 0 V to 0.6 V. the ramping up time is 1 ms. The device maintains smooth and constant ramp-up of the output voltage during start-up regardless of load current.

7.3.3 Frequency Selection

TPS53513 device lets users select the switching frequency by using the RF pin. Table 1 lists the divider ratio and some example resistor values for the switching frequency selection. The 1% tolerance resistors with a typical temperature coefficient of ±100 ppm/°C are recommended. If the design requires a tighter noise margin for more reliable SW-frequency detection, use higher performance resistors.

$\mathsf{R}_{\mathsf{DR}} = \frac{\mathsf{R}_{\mathsf{RF}_\mathsf{L}}}{\left(\mathsf{R}_{\mathsf{RF}_\mathsf{L}} + \mathsf{R}_{\mathsf{RF}_\mathsf{H}}\right)}$

where

- R_{RF_L} is the low-side resistance of the RF pin resistor divider

(1) Resistor divider ratio (R_{DR}) is described in Equation 1.

- R_{RF_H} is the high-side resistance of the RF pin resistor divider

7.3.4 D-CAP3 Control and Mode Selection $R_R \longrightarrow To \text{ comparator}$

Vout

The TPS53513 device uses D-CAP3 mode control to achieve fast load transient while maintaining the ease-ofuse feature. An internal RAMP is generated and fed to the VFB pin to reduce jitter and maintain stability. The amplitude of the ramp is determined by the R-C time-constant as shown in Figure 34. At different switching frequencies, (f_{SW}) the R-C time-constant varies to maintain relatively constant RAMP amplitude.

7.3.4.1 D-CAP3 Mode

From small-signal loop analysis, a buck converter using the D-CAP3 mode control architecture can be simplified as shown in Figure 35.

Table 1. Switching F	Frequency Selection
----------------------	---------------------

SWITCHING	RESISTOR	EXAMPLE RF FRE	QUENCY COMBINATIONS
FREQUENCY (f _{SW}) (kHz)	DIVIDER RATIO ⁽¹⁾ (R _{DR})	R _{RF_H} (kΩ)	R _{RF_L} (kΩ)
1000	> 0.557	1	300
850	0.461	180	154
750	0.375	200	120
600	0.297	249	105
500	0.229	240	71.5
400	0.16	249	47.5
300	0.096	255	27
250	< 0.041	270	11.5

www.ti.com.cn

(1)

TPS53513

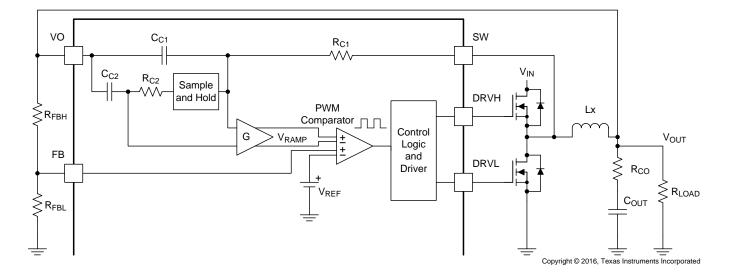
ZHCSBM9C-SEPTEMBER 2013-REVISED JUNE 2018

18

output capacitance for stable operation.

The D-CAP3 control architecture includes an internal ripple generation network enabling the use of very low-ESR output capacitors such as multilayered ceramic capacitors (MLCC). No external current sensing network or voltage compensators are required with D-CAP3 control architecture. The role of the internal ripple generation network is to emulate the ripple component of the inductor current information and then combine it with the voltage feedback signal to regulate the loop operation. For any control topologies supporting no external compensation design, there is a minimum and/or maximum range of the output filter it can support. The output filter used with the TPS53513 device is a lowpass L-C circuit. This L-C filter has double pole that is described in Equation 2.

Figure 35. D-CAP3 Mode


$$f_{P} = \frac{I}{2 \times \pi \times \sqrt{L_{OUT} \times C_{OUT}}}$$

At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the TPS53513 device. The low frequency L-C double pole has a 180 degree in phase. At the output filter frequency, the gain rolls off at a -40dB per decade rate and the phase drops rapidly. The internal ripple generation network introduces a high-frequency zero that reduces the gain roll off from -40 dB to -20 dB per decade and increases the phase to 90 degree one decade above the zero frequency.

The inductor and capacitor selected for the output filter must be such that the double pole of Equation 2 is located close enough to the high-frequency zero so that the phase boost provided by the high-frequency zero provides adequate phase margin for the stability requirement.

SWITCHING FREQUENCIES (f _{SW}) (kHz)	ZERO (f _z) LOCATION (kHz)
250 and 300	6
400 and 500	7
600 and 750	9
850 and 1000	12

After identifying the application requirements, the output inductance should be designed so that the inductor peak-to-peak ripple current is approximately between 25% and 35% of the $I_{CC(max)}$ (peak current in the application). Use Table 2 to help locate the internal zero based on the selected switching frequency. In general, where reasonable (or smaller) output capacitance is desired, Equation 3 can be used to determine the necessary

(2)

$$f_{P} = \frac{1}{2 \times \pi \times \sqrt{L_{OUT} \times C_{OUT}}} = f_{Z}$$

(3)

If MLCC is used, consider the derating characteristics to determine the final output capacitance for the design. For example, when using an MLCC with specifications of 10- μ F, X5R and 6.3 V, the deratings by DC bias and AC bias are 80% and 50%, respectively. The effective derating is the product of these two factors, which in this case is 40% and 4- μ F. Consult with capacitor manufacturers for specific characteristics of the capacitors to be used in the system/applications.

Table 3 shows the recommended output filter range for an application design with the following specifications:

- Input voltage, V_{IN} = 12 V
- Switching frequency, f_{SW} = 600 kHz
- Output current, I_{OUT} = 8 A

The minimum output capacitance is verified by the small-signal measurement conducted on the EVM using the following two criteria:

- Loop crossover frequency is less than one-half the switching frequency (300 kHz)
- Phase margin at the loop crossover is greater than 50 degrees

For the maximum output capacitance recommendation, simplify the procedure to adopt an unrealistically high output capacitance for this type of converter design, then verify the small-signal response on the EVM using the following one criteria:

· Phase margin at the loop crossover is greater than 50 degrees

As indicated by the phase margin, the actual maximum output capacitance ($C_{OUT(max)}$) can continue to go higher. However, small-signal measurement (bode plot) should be done to confirm the design.

Select a MODE pin configuration as shown in Table 4 to in double the R-C time-constant option for the maximum output capacitance design and application. Select a MODE pin configuration to use single R-C time constant option for the normal (or smaller) output capacitance design and application.

The MODE pin also selects skip-mode or FCCM-mode operation.

V _{о∪т} (V)	R _{LOWER} (kΩ)	R _{UPPER} (kΩ)	L _{оυт} (µН)	C _{OUT(min)} (µF) (1)	CROSS- OVER (kHz)	PHASE MARGIN (°)	C _{OUT(max)} (µF) (1)	INTERNAL RC SETTING (µs)	INDUCTOR ΔI/I _{CC(max)}	I _{CC(max)} (A)		
0.6		0	0.36	3 × 100	247	70		40	33%			
0.0		0	PIMB065T-R36MS		48	62	30 x 100	80	3370			
1.2		10	0.68	9 × 22	207	53		40	33%			
1.2			PIMB065T-R68MS	PIMB065T-R68MS		25	84	30 x 100	80	3370		
2.5	10	31.6	1.2	4 × 22	185	57		40	34%	0		
2.5	10		51.0	51.0	PIMB065T-1R2MS		11	63	30 x 100	80	34%	8
2.2	3.3 45.3	45.0	1.5	3 × 22	185	57		40	33%			
3.3		PIMB065T-1R5MS		9	59	30 x 100	80	33%				
F F		00.5	2.2	2 × 22	185	51		40	28%			
5.5	5.5	82.5	PIMB065T-2R2MS		7	58	30 x 100	80	20%			

Table 3. Recommended Component Values

(1) All C_{OUT(min)} and C_{OUT(max)} capacitor specifications are 1206, X5R, 10 V.

For higher output voltage at or above 2.0 V, additional phase boost might be required to secure sufficient phase margin due to phase delay/loss for higher output voltage (large on-time (t_{ON})) setting in a fixed on time topology based operation.

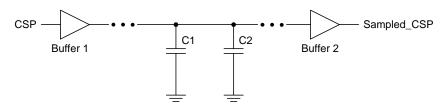
A feedforward capacitor placing in parallel with R_{UPPER} is found to be very effective to boost the phase margin at loop crossover. Refer to TI application note SLVA289 for details.

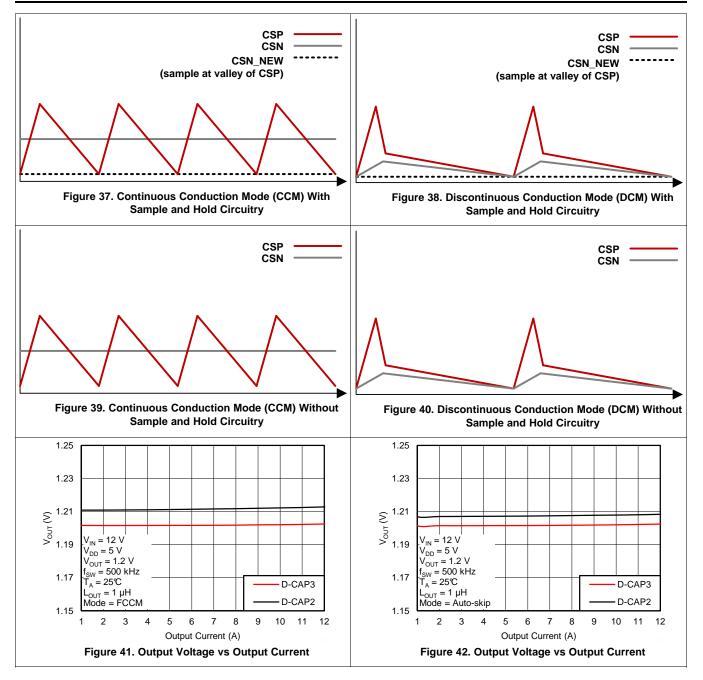
MODE SELECTION	ACTION	R _{MODE} (kΩ)	R-C TIME CONSTANT (µs)	SV FRE f:	CIES	
			60	250	and	300
		0	50	400	and	500
		0	40	600	and	750
Skin Modo	Pull down to GND		30	850	and	1000
Skip Mode			120	250	and	300
		150	100	400	and	500
		150	80	600	and	750
			60	850	and	1000
			60	250	and	300
		20	50	400	and	500
		20	40	600	and	750
FCCM ⁽¹⁾	Connect to		30	850	and	1000
FCCIWI	PGOOD		120	250	and	300
		450	100	400	and	500
		150	80	600	and	750
			60	850	and	1000
			120	250	and	300
ГССМ		0	100	400	and	500
FCCM	Connect to VREG	0	80	600	and	750
			60	850	and	1000

Table 4. Mode Selection and Internal RAMP R-C Time Constant

(1) Device goes into Forced CCM (FCCM) after PGOOD becomes high.

7.3.4.2 Sample and Hold Circuitry




Figure 36. Sample and Hold Logic Circuitry (Patent Pending)

The sample and hold circuitry is the difference between D-CAP3 and D-CAP2. The sample and hold circuitry, which is an advance control scheme to boost output voltage accuracy higher on the device, is one of features of the device. The sample and hold circuitry generates a new DC voltage of CSN instead of the voltage which is produced by R_{C2} and C_{C2} which allows for tight output-voltage accuracy and makes the device more competitive.

TRUMENTS

TPS53513 ZHCSBM9C – SEPTEMBER 2013–REVISED JUNE 2018

7.3.4.3 Adaptive Zero-Crossing

The TPS53513 device uses an adaptive zero-crossing circuit to perform optimization of the zero inductor-current detection during skip-mode operation. This function allows ideal low-side MOSFET turn-off timing. The function also compensates the inherent offset voltage of the Z-C comparator and delay time of the Z-C detection circuit. Adaptive zero-crossing prevents SW-node swing-up caused by too-late detection and minimizes diode conduction period caused by too-early detection. As a result, the device delivers better light-load efficiency.

7.3.5 Power-Good

The TPS53513 device has power-good output that indicates high when switcher output is within the target. The power-good function is activated after the soft-start operation is complete. If the output voltage becomes within ±8% of the target value, internal comparators detect the power-good state and the power-good signal becomes high after a 1-ms internal delay. If the output voltage goes outside of ±16% of the target value, the power-good signal becomes low after a 2-us internal delay. The power-good output is an open-drain output and must be pulled up externally.

In applications or end systems where PGOOD signal is needed by the load to sequence additional voltage supplies, take care to ensure both threshold and noise level/duration are within the design specification. This is especially true when the PGOOD signal is pulled up to the VREG supply. Because VREG is also being used to supply the internal FET gate drivers, during the active switching of the FETs, switching spikes associated with charging and discharging of the input parasitic capacitance of the FETs can be coupled on the VREG supply.

There are 3 intrinsic factors to consider:

- 1. Level of the spike. The typical spike level could be a few hundred millivolts below VREG. For worst case design, consider using -500 mV.
- 2. Duration of the spike. The worst case spike duration could reach 150 ns.
- 3. DC level of the VREG supply. The DC variation of VREG supply can be found in *Electrical Characteristics*.

Last, when laying out the TPS53513, follow the Layout Guidelines closely to minimize the noise impact to the VREG supply. In situations where layout cannot be optimized further, secure real-time measurement to ensure PGOOD design has sufficient margin.

7.3.6 Current Sense and Overcurrent Protection

The TPS53513 device has cycle-by-cycle overcurrent limiting control. The inductor current is monitored during the OFF state and the controller maintains the OFF state during the period that the inductor current is larger than the overcurrent trip level. To provide good accuracy and a cost-effective solution, the TPS53513 device supports temperature compensated MOSFET R_{DS(on)} sensing. Connect the TRIP pin to GND through the trip-voltage setting resistor, R_{TRIP}. The TRIP pin sources I_{TRIP} current, which is 10 µA typically at room temperature, and the trip level is set to the OCL trip voltage V_{TRIP} as shown in Equation 4.

 $V_{TRIP} = R_{TRIP} \times I_{TRIP}$

where

- V_{TRIP} is in mV
- R_{TRIP} is in k Ω
- I_{TRIP} is in μA

The inductor current is monitored by the voltage between the GND pin and SW pin so that the SW pin is properly connected to the drain pin of the low-side MOSFET. ITRIP has a 3000-ppm/°C temperature slope to compensate the temperature dependency of R_{DS(on)}. The GND pin acts as the positive current-sensing node. Connect the GND pin to the proper current sensing device, (for example, the source pin of the low-side MOSFET.)

Because the comparison occurs during the OFF state, V_{TRIP} sets the valley level of the inductor current. Thus, the load current at the overcurrent threshold, I_{OCP}, is calculated as shown in Equation 5.

$$I_{OCP} = \frac{V_{TRIP}}{\left(8 \times R_{DS(on)}\right)} + \frac{I_{IND(ripple)}}{2} = \frac{V_{TRIP}}{\left(8 \times R_{DS(on)L}\right)} + \frac{1}{2 \times L \times f_{SW}} \times \frac{\left(V_{IN} - V_{OUT}\right) \times V_{OUT}}{V_{IN}}$$

where

 $R_{DS(on)L}$ is the on-resistance of the low-side MOSFET

 R_{TRIP} is in k Ω

(5)

(4)

Equation 5 calculates the typical DC OCP level (typical low-side on-resistance [R_{DS(on)}] of 5.9 mΩ should be used); to design for worst case minimum OCP, maximum low-side on-resistance value of 8 mΩ should be used.

During an overcurrent condition, the current to the load exceeds the current to the output capacitor thus the output voltage tends to decrease. Eventually, the output voltage crosses the undervoltage-protection threshold and shuts down.

For the TPS53513 device, the overcurrent protection maximum is recommended up to 12 A only.

7.3.7 Overvoltage and Undervoltage Protection

The TPS53513 device monitors a resistor-divided feedback voltage to detect overvoltage and undervoltage. When the feedback voltage becomes lower than 68% of the target voltage, the UVP comparator output goes high and an internal UVP delay counter begins counting. After 1 ms, the TPS53513 device latches OFF both high-side and low-side MOSFETs drivers. The UVP function enables after soft-start is complete.

When the feedback voltage becomes higher than 120% of the target voltage, the OVP comparator output goes high and the circuit latches OFF the high-side MOSFET driver and turns on the low-side MOSFET until reaching a negative current limit. Upon reaching the negative current limit, the low-side FET is turned off and the high-side FET is turned on again for a minimum on-time. The TPS53513 device operates in this cycle until the output voltage is pulled down under the UVP threshold voltage for 1 ms. After the 1-ms UVP delay time, the high-side FET is latched off and low-side FET is latched on. The fault is cleared with a reset of VDD or by retoggling the EN pin.

7.3.8 Out-Of-Bounds Operation

The device has an out-of-bounds (OOB) overvoltage protection that protects the output load at a much lower overvoltage threshold of 8% above the target voltage. OOB protection does not trigger an overvoltage fault, so the device is not latched off after an OOB event. OOB protection operates as an early no-fault overvoltage-protection mechanism. During the OOB operation, the controller operates in forced PWM mode only by turning on the low-side FET. Turning on the low-side FET beyond the zero inductor current quickly discharges the output capacitor thus causing the output voltage to fall quickly toward the setpoint. During the operation, the cycle-by-cycle negative current limit is also activated to ensure the safe operation of the internal FETs.

7.3.9 UVLO Protection

The TPS53513 device monitors the voltage on the VDD pin. If the VDD pin voltage is lower than the UVLO offthreshold voltage, the switch mode power supply shuts off. If the VDD voltage increases beyond the UVLO onthreshold voltage, the controller turns back on. UVLO is a nonlatch protection.

7.3.10 Thermal Shutdown

The TPS53513 device monitors internal temperature. If the temperature exceeds the threshold value (typically 140°C), TPS53513 device shuts off. When the temperature falls approximately 40°C below the threshold value, the device turns on. Thermal shutdown is a nonlatch protection.

7.4 Device Functional Modes

7.4.1 Auto-Skip Eco-mode Light Load Operation

While the MODE pin is pulled to GND directly or through 150-k Ω resistor, the TPS53513 device automatically reduces the switching frequency at light-load conditions to maintain high efficiency. This section describes the operation in detail.

As the output current decreases from heavy load condition, the inductor current also decreases until the rippled valley of the inductor current touches zero level. Zero level is the boundary between the continuous-conduction and discontinuous-conduction modes. The synchronous MOSFET turns off when this zero inductor current is detected. As the load current decreases further, the converter runs into discontinuous-conduction mode (DCM). The on-time is maintained to a level approximately the same as during continuous-conduction mode operation so that discharging the output capacitor with a smaller load current to the level of the reference voltage requires more time. The transition point to the light-load operation $I_{O(LL)}$ (for example: the threshold between continuous-and discontinuous-conduction mode) is calculated as shown in Equation 6.

$$I_{OUT(LL)} = \frac{1}{2 \times L \times f_{SW}} \times \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{V_{IN}}$$

where

• f_{SW} is the PWM switching frequency

Using only ceramic capacitors is recommended for Auto-skip mode.

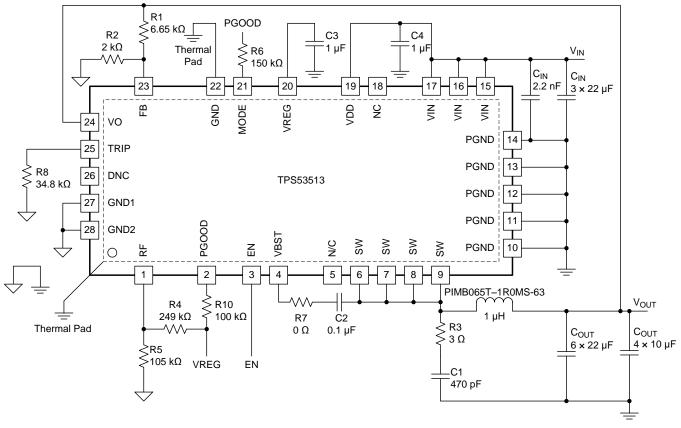
Device Functional Modes (continued)

7.4.2 Forced Continuous-Conduction Mode

When the MODE pin is tied to the PGOOD pin through a resistor, the controller operates in continuous conduction mode (CCM) during light-load conditions. During CCM, the switching frequency maintained to an almost constant level over the entire load range which is suitable for applications requiring tight control of the switching frequency at the cost of lower efficiency.

8 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPS53513 device is a high-efficiency, single-channel, synchronous-buck converter. The device suits lowoutput voltage point-of-load applications with 8-A or lower output current in computing and similar digital consumer applications.

8.2 Typical Application

This design example describes a D-CAP3-mode, 8-A synchronous buck converter with integrated MOSFETs. The device provides a fixed 1.2-V output at up to 8 A from a 12-V input bus.

Typical Application (continued)

8.2.1 Design Requirements

This design uses the parameters listed in Table 5.

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
INPUT C	CHARACTERISTIC		L		1	
V _{IN}	Voltage range		5	12	18	V
I _{MAX}	Maximum input current	V _{IN} = 5 V, I _{OUT} = 8 A		2.5		А
	No load input current	$V_{IN} = 12 \text{ V}, I_{OUT} = 0 \text{ A}$ with auto skip mode		1		mA
OUTPU	T CHARACTERISTICS					
V _{OUT}	Output voltage			1.2		V
Output voltage regulation	Line regulation, 5 V \leq V _{IN} \leq – 14 V with FCCM		0.2%			
	Load regulation, $V_{IN} = 12 \text{ V}, 0 \text{ A} \le I_{OUT} \le 8 \text{ A with FCCM}$		0.5%			
V _{RIPPLE}	Output voltage ripple	$(V_{IN} = 12 \text{ V}, I_{OUT} = 8 \text{ A with FCCM}$		10		mV_{PP}
I _{LOAD}	Output load current		0		8	А
I _{OVER}	Output over current			11		A
t _{SS}	Soft-start time			1		ms
SYSTEM	IS CHARACTERISTICS		·			
f _{SW}	Switching frequency			1		MHz
η	Peak efficiency	V _{IN} = 12 V, V _{OUT} = 1.2 V ,I _{OUT} = 4 A		88.5%		
	Full load efficiency	V_{IN} = 12 V, V_{OUT} = 1.2 V , I_{OUT} = 8 A		86.9%		
T _A	Operating temperature			25		°C

Table 5. Design Example Specifications

8.2.2 Detailed Design Procedure

The external components selection is a simple process using D-CAP3 mode. Select the external components using the following steps

8.2.2.1 Choose the Switching Frequency

The switching frequency is configured by the resistor divider on the RF pin. Select one of eight switching frequencies from 250 kHz to 1 MHz. Refer to Table 1 for the relationship between the switching frequency and resistor-divider configuration.

8.2.2.2 Choose the Operation Mode

Select the operation mode using Table 4.

8.2.2.3 Choose the Inductor

Determine the inductance value to set the ripple current at approximately ¼ to ½ of the maximum output current. Larger ripple current increases output ripple voltage, improves signal-to-noise ratio, and helps to stabilize operation.

$$L = \frac{1}{I_{\text{IND}(\text{ripple})} \times f_{\text{SW}}} \times \frac{\left(V_{\text{IN}(\text{max})} - V_{\text{OUT}}\right) \times V_{\text{OUT}}}{V_{\text{IN}(\text{max})}} = \frac{3}{I_{\text{OUT}(\text{max})} \times f_{\text{SW}}} \times \frac{\left(V_{\text{IN}(\text{max})} - V_{\text{OUT}}\right) \times V_{\text{OUT}}}{V_{\text{IN}(\text{max})}}$$
$$= \frac{3}{6 \times 500 \text{ kHz}} \times \frac{\left(12 \text{ V} - 1.2 \text{ V}\right) \times 1.2 \text{ V}}{12 \text{ V}} = 1.08 \,\mu\text{H}$$
(7)

The inductor requires a low DCR to achieve good efficiency. The inductor also requires enough room above peak inductor current before saturation. The peak inductor current is estimated using Equation 8.

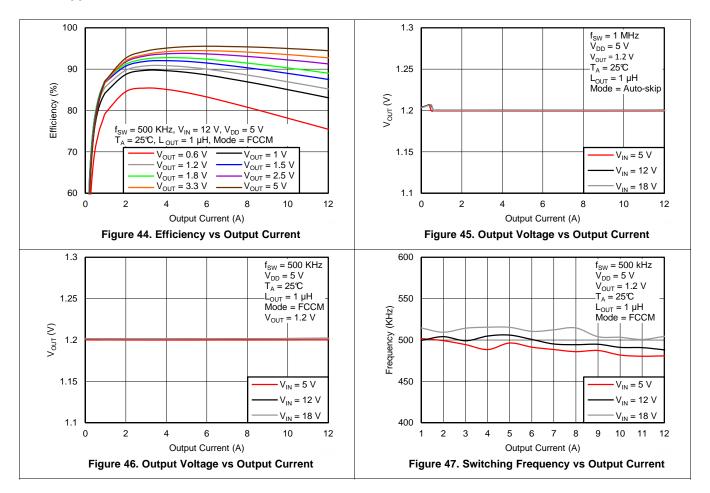
$$I_{\text{IND}(\text{peak})} = \frac{V_{\text{TRIP}}}{8 \times R_{\text{DS}(\text{on})}} + \frac{1}{L \times f_{\text{SW}}} \times \frac{\left(V_{\text{IN}(\text{max})} - V_{\text{OUT}}\right) \times V_{\text{OUT}}}{V_{\text{IN}(\text{max})}} = \frac{10\,\mu\text{A} \times R_{\text{TRIP}}}{8 \times 5.9\,\text{m}\Omega} + \frac{1}{1\mu\text{H} \times 500\,\text{kHz}} \times \frac{\left(12\,\text{V} - 1.2\,\text{V}\right) \times 1.2\,\text{V}}{12\,\text{V}}$$
(8)

8.2.2.4 Choose the Output Capacitor

The output capacitor selection is determined by output ripple and transient requirement. When operating in CCM, the output ripple has two components as shown in Equation 9. Equation 10 and Equation 11 define these components.

$$V_{\text{RIPPLE}} = V_{\text{RIPPLE(C)}} + V_{\text{RIPPLE(ESR)}}$$

$$I_{\text{L(ripple)}}$$
(9)

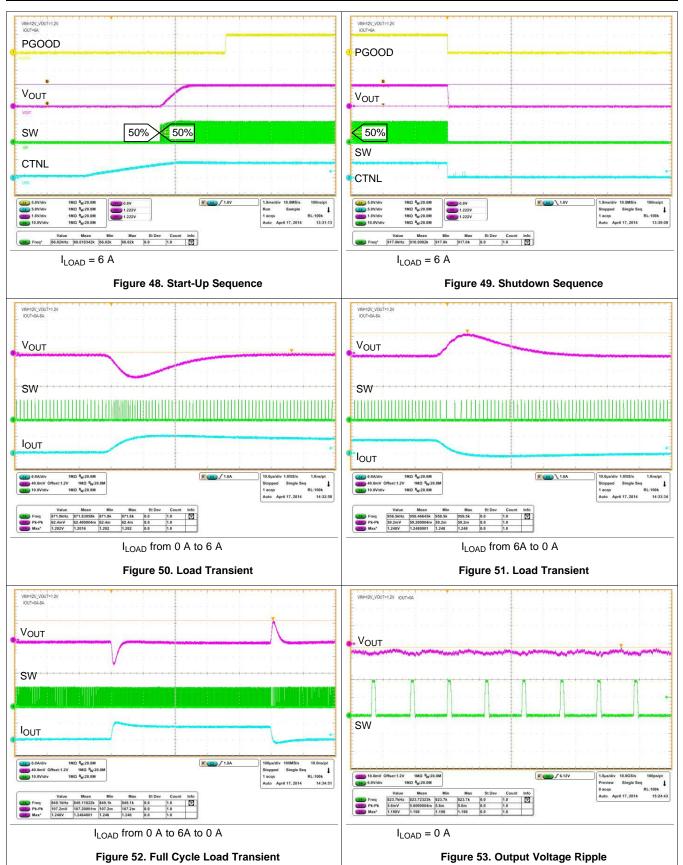

$$V_{\text{RIPPLE}(C)} = \frac{L(t,p,r,C)}{8 \times C_{\text{OUT}} \times f_{\text{SW}}}$$
(10)
$$V_{\text{RIPPLE}(\text{ESR})} = I_{\text{L}(t,p,r,C)} \times \text{ESR}$$
(11)

8.2.2.5 Determine the Value of R1 and R2

The output voltage is programmed by the voltage-divider resistors, R1 and R2, shown in Equation 12. Connect R1 between the VFB pin and the output, and connect R2 between the VFB pin and GND. The recommended R2 value is from 1 k Ω to 20 k Ω . Determine R1 using Equation 12.

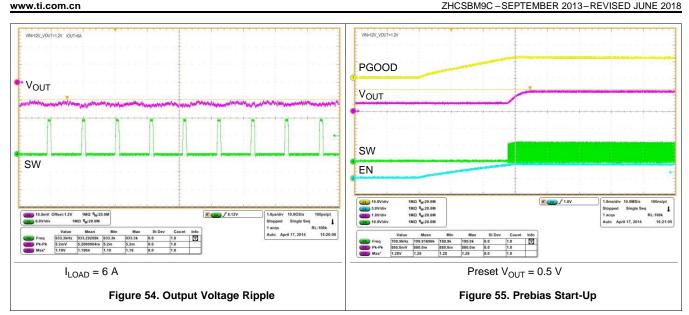
$$R1 = \frac{V_{OUT} - 0.6}{0.6} \times R2 = \frac{1.2 \, V - 0.6}{0.6} \times 10 \, k\Omega = 10 \, k\Omega \tag{12}$$

8.2.3 Application Curves



TEXAS INSTRUMENTS

www.ti.com.cn


TPS53513

ZHCSBM9C-SEPTEMBER 2013-REVISED JUNE 2018

TPS53513 ZHCSBM9C – SEPTEMBER 2013–REVISED JUNE 2018

9 Power Supply Recommendations

The devices are designed to operate from an input voltage supply range between 1.5 V and 18 V (4.5 V to 25 V biased). This input supply must be well regulated. Proper bypassing of input supplies and internal regulators is also critical for noise performance, as is PCB layout and grounding scheme. See the recommendations in the *Layout* section.

10 Layout

10.1 Layout Guidelines

Before beginning a design using the TPS53513 device, consider the following:

- Place the power components (including input and output capacitors, the inductor, and the DPA02259 device) on the solder side of the PCB. To shield and isolate the small signal traces from noisy power lines, insert and connect at least one inner plane to ground.
- All sensitive analog traces and components such as VFB, PGOOD, TRIP, MODE, and RF must be placed away from high-voltage switching nodes such as SW and VBST to avoid coupling. Use internal layers as ground planes and shield the feedback trace from power traces and components.
- GND (pin 22) must be connected directly to the thermal pad. Connect the thermal pad to the PGND terminals and then to the GND plane.
- The GND1 terminal (pin 27) and the GND2 terminal (pin 28) are not actual GND terminals and neither of these terminals should be used for dedicated ground connection. The recommendation is to connect GND1 terminal (pin 27) and the GND2 terminal (pin 28) to the nearby ground.
- Place the VIN decoupling capacitors as close to the VIN and PGND terminals as possible to minimize the input AC-current loop.
- Place the feedback resistor near the device to minimize the VFB trace distance.
- Place the frequency-setting resistor (R_{RF}), OCP-setting resistor (R_{TRIP}) and mode-setting resistor (R_{MODE}) close to the device. Use the common GND via to connect the resistors to the GND plane if applicable.
- Place the VDD and VREG decoupling capacitors as close to the device as possible. Provide GND vias for each decoupling capacitor and ensure the loop is as small as possible.
- This design defines the PCB trace as a switch node, which connects the SW terminals and high-voltage side of the inductor. The switch node should be as short and wide as possible.
- Use separated vias or trace to connect SW node to the snubber, bootstrap capacitor, and ripple-injection resistor. Do not combine these connections.
- Place one more small capacitor (2.2-nF, 0402 size) between the VIN and PGND terminals. This capacitor must be placed as close to the device as possible.
- TI recommends placing a snubber between the SW shape and GND shape for effective ringing reduction. The value of snubber design starts at 3 Ω + 470 pF.
- Consider R-C-C_C network (ripple injection network) component placement and place the AC coupling capacitor, C_C, close to the device, and R and C close to the power stage. (Application designs with output capacitance lower than the minimum may require only an R-C-C network. In this case, Bode plot verification is needed to validate the design).
- See Figure 56 for the layout recommendation.

10.2 Layout Example

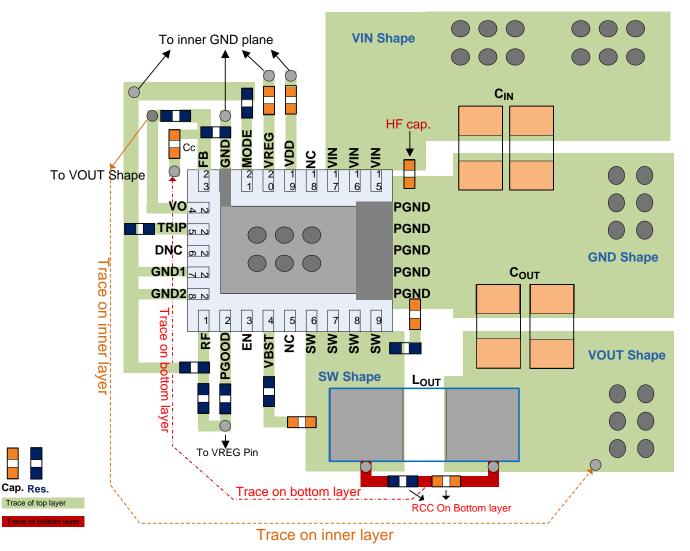
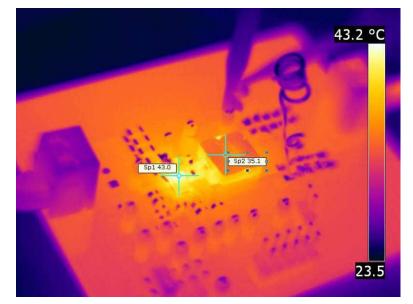



Figure 56. Layout Recommendation

10.3 Thermal Performance

 $T_{A} = 23^{\circ}C, \ f_{SW} = 500 \ \text{kHz}, \ V_{IN} = 12 \ \text{V}, \ V_{OUT} = 1.24 \ \text{V}, \ I_{OUT} = 8 \ \text{A}, \ R_{BOOT} = 0 \ \Omega, \ \text{SNB} = 3 \ \Omega + 470 \ \text{pF}$ Inductor: $L_{OUT} = 1 \ \mu\text{H}, \ \text{PIMB103T-1R0MS-63}, \ 10 \ \text{mm} \times 11.2 \ \text{mm} \times 3 \ \text{mm}, \ 5.3 \ \text{m}\Omega$

Figure 57. SP1: 43°C (TPS53513), SP2: 35.1°C (Inductor)

11 器件和文档支持

11.1 文档支持

11.1.1 使用 WEBENCH® 工具创建定制设计方案

单击此处,使用 TPS53513 器件并借助 WEBENCH® 电源设计器创建定制设计方案。

- 1. 首先输入输入电压 (V_{IN})、输出电压 (V_{OUT}) 和输出电流 (I_{OUT}) 要求。
- 2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。
- 3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。

WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。

在多数情况下,可执行以下操作:

- 运行电气仿真,观察重要波形以及电路性能
- 运行热性能仿真,了解电路板热性能
- 将定制原理图和布局方案以常用 CAD 格式导出
- 打印设计方案的 PDF 报告并与同事共享

有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。

11.2 文档支持

11.2.1 相关文档

请参阅如下相关文档:

《采用前馈电容器优化内部补偿直流/直流转换器的瞬态响应》

11.3 接收文档更新通知

要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.4 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 **71** 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

11.5 商标

D-CAP3, SWIFT, Eco-mode, E2E are trademarks of Texas Instruments. WEBENCH is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.6 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.7 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、缩写和定义。

ZHCSBM9C-SEPTEMBER 2013-REVISED JUNE 2018

www.ti.com.cn

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更, 恕不另行通知, 且 不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
DPA02259RVER	ACTIVE	VQFN-CLIP	RVE	28	3000	RoHS-Exempt & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS53513	Samples
TPS53513RVER	ACTIVE	VQFN-CLIP	RVE	28	3000	RoHS-Exempt & Green	NIPDAU SN	Level-2-260C-1 YEAR	-40 to 85	TPS53513	Samples
TPS53513RVET	ACTIVE	VQFN-CLIP	RVE	28	250	RoHS-Exempt & Green	NIPDAU SN	Level-2-260C-1 YEAR	-40 to 85	TPS53513	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

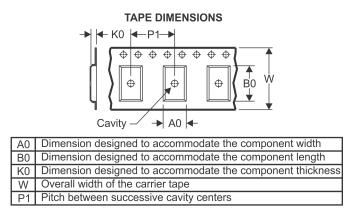
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

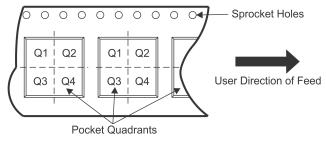
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

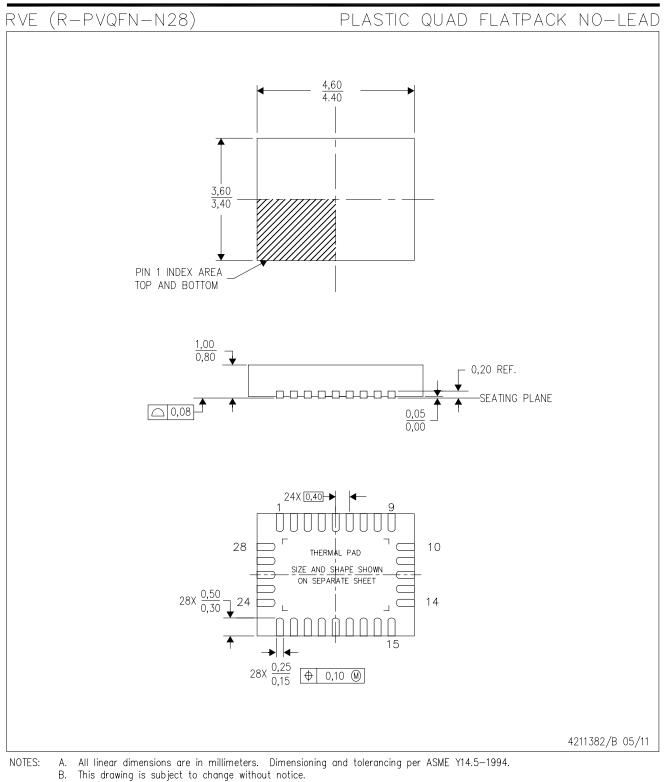
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS53513RVER	VQFN- CLIP	RVE	28	3000	330.0	12.4	3.8	4.8	1.18	8.0	12.0	Q1
TPS53513RVER	VQFN- CLIP	RVE	28	3000	330.0	12.4	3.71	4.71	1.1	8.0	12.0	Q1
TPS53513RVET	VQFN- CLIP	RVE	28	250	180.0	12.4	3.71	4.71	1.1	8.0	12.0	Q1
TPS53513RVET	VQFN- CLIP	RVE	28	250	180.0	12.4	3.8	4.8	1.18	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


7-Jan-2021

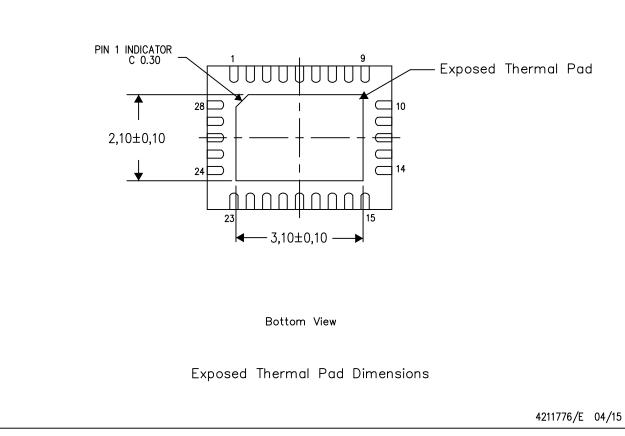
*All dimensions are nominal

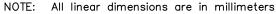
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS53513RVER	VQFN-CLIP	RVE	28	3000	367.0	367.0	38.0
TPS53513RVER	VQFN-CLIP	RVE	28	3000	367.0	367.0	35.0
TPS53513RVET	VQFN-CLIP	RVE	28	250	210.0	185.0	35.0
TPS53513RVET	VQFN-CLIP	RVE	28	250	213.0	191.0	35.0

MECHANICAL DATA

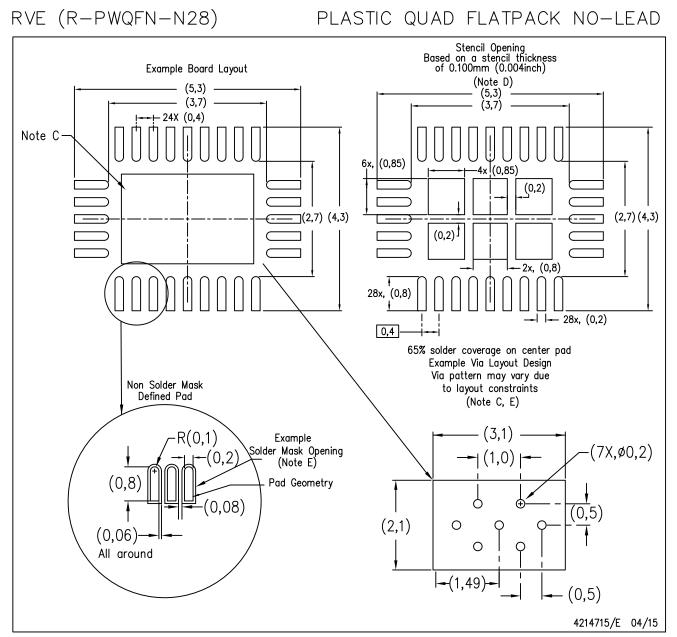
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. E. Falls within JEDEC MO-220.

RVE (R-PVQFN-N28)


PLASTIC QUAD FLATPACK NO-LEAD


THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Electroformed stencils offer adequate release at thicker values/lower Area Ratios. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- E. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没 有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可 将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知 识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) 或 ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款 的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

> 邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122 Copyright © 2021 德州仪器半导体技术(上海)有限公司