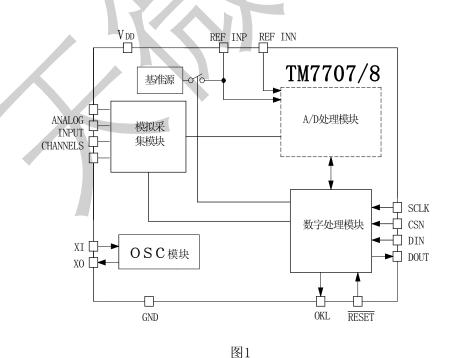


一、特性描述


TM7707/8 是 24 位 A/D 转换芯片,主要用于低频测量,能直接将传感器测量的微小信号进行 A/D 转换。

TM7707 有两个全差分通道, TM7708 有三个伪差分通道, 采用 SPI 三线串行通讯。内置可配置的模拟前端增益、信号极性以及更新速率。具有自校正和系统校正功能,可消除器件本身和系统的增益以及偏移误差。还具有高分辨率、优良的抗噪声性能以及低电压低功耗等特点,非常适合仪表测量、工业控制等应用领域。本产品性能优良,质量可靠。

二、功能特点

- ▶TM7707:双通道全差分输入的ADC
- ▶TM7708:三个伪差分输入通道的ADC
- ▶24位 Σ-Δ模数转换
- ▶积分非线性小于 0.003%
- ▶可编程增益: 1~128
- ▶三线串行通讯
- ▶对模拟输入有缓冲的能力
- ▶3V或5V工作电压,范围±5%
- ▶3V电压时,最大功耗为1mW
- ▶掉电模式,电流的最大值为8µA
- ▶16脚SOP封装

三、结构图

四、管脚定义

SCLK 10		16	GND	SCLK 1 c	,	16 GND
XI 2		15	VDD	XI 2		15 VDD
X03		14	DIN	X0 3		14 DIN
CSN 4	TM7707	13	DOUT	CSN 4	TM7708	13 DOUT
RESET 5	1111101	12	OKL	RESET5	1111100	12 OKL
AIN2P 6		11	AIN2N	AIN1 6		11 AIN3
AIN1P 7		10	REF INN	AIN2 7		10 REF INN
AIN1N 8		9	REF INP	COMMON 8		9 REF INP

图 2

五、管脚功能定义

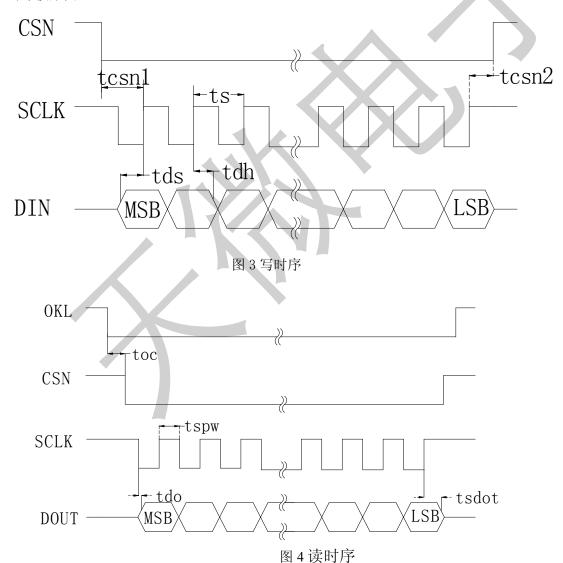
引脚名称	ĸ	引脚序号	I/0	功能
SC	LK	1	Ι	串行时钟输入
X	I	2	Ι	时钟输入,晶振或外部时钟
X	0	3	0	时钟输出
CS	SN	4	I	片选,输入低电平有效
RES	SET	5	I	复位,低电平有效
TM7707	AIN2P	6	T	通道2的差分模拟正输入端
TM7708	AIN1	0		通道1的模拟输入端
TM7707	AIN1P	7	T	通道1的差分模拟正输入端
TM7708	AIN2		1	通道2的模拟输入端
TM7707	AIN1N	8		通道1的差分模拟负输入端
TM7708	COMMON	0	1	COMMON 输入端,模拟通道1、2、3以此输入端为参考点
REF	INP	9	Ι	参考电压的正输入端
REF	INN	10	I	参考电压的负输入端
TM7707	AIN2N	11	I	通道2的差分模拟负输入端
TM7708	AIN3	11	1	通道3的模拟输入端
OK	XL .	12	0	AD 转换完成逻辑输出标志位
DO	UT	13	0	串行数据输出端
DI	IN	14	I	串行数据输入端
VD)D	15	_	电源
GN	ND .	16	_	系统地

集成电路系静电敏感器件, 在干燥季节或者干燥环境使用容易产生大量 静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电 路预防处理措施,不正当的操作焊接,可能会造成ESD损坏或者性能下降,芯 片无法正常工作。

六、通讯接口

TM7707/8 采用串行通讯来完成片内寄存器的读/写操作。串行接口包括 5 个信号接口: SCLK、DIN、DOUT、OKL 和 CSN,数据传输顺序采用高位在前。

DIN: 数据输入口,在时钟上升沿写入数据。


DOUT: 数据输出口,在时钟下降沿输出数据。

SCLK: 读写串行时钟输入。

OKL:指示信号,指示 ADC 结果寄存器的数据是否更新好。为低电平表示 ADC 数据已经转换完成,此时可已从 ADC 结果寄存器读取 ADC 数据。为高电平,表示 ADC 正在转换或更新中,此时无法读取数据。

CSN: 片选信号,只有 CSN 先拉低使能,才能对寄存器进行读写操作,读写完后要把 CSN 拉高。

时序波形图

时序特性

参数名称	参数符号	测试条件	最小值	典型值	最大值	单位
主时钟频率	$\mathbf{f}_{\scriptscriptstyle ext{CLKIN}}$	-	400		2500	kHz
主时钟低电平时间	Tlow	t _{CLKIN} =1/	0. 4*t _{clkin}			ns
主时钟高电平时间	Thigh	$\mathrm{f}_{\scriptscriptstyle ext{CLKIN}}$	0. 4*t _{clkin}			ns
OKL 高脉冲	$t_{\scriptscriptstyle{0}}$			500*t _{clkin}		ns
RESET 脉冲宽度	$t_{\scriptscriptstyle R}$		100			ns
读写时序						
CSN↓→SLCK 第一个上升沿	Tcsn1		120			ns
Slck↓→DIN 有效采集间隔时间	tdo	V _{DD} =5V	0	-	80	ns
SICK TOTA 有效不采问幅时间	ιαο	$V_{DD}=3V$	0	-	100	ns
SCLK↑→CSN↑时间	Tcsn2		0			ns
Sclk↑后总线撤回时间	tsout	V _{DD} =5V	10		60	ns
SCIK / 口心线 似凹凹凹	tsout	V _{DD} =3V	10		100	ns
DIN 有效→SCLK↑采集时间	tds	4	30			ns
DIN 有效→SCLK↑保持时间	tdh		20			ns
OKL↓→ CSN↓时间	toc		0			ns
Clock 脉冲宽度高(低)电平	tspw		100			ns

七、寄存器描述

TM7707/8 内部有 8 个寄存器,首要介绍的是通讯寄存器,因为其他寄存器的任何操作都必需先操作通讯寄存器,才能对其寄存器进行操作。若在 DIN 高电平的写操作再发送大于 32 个脉冲后,芯片将会复位。

表 1 通讯寄存器 8 位描述 上电/复位状态: 00 Hex

N.	~	O HR 11 PH O	LT-1HIVE	2.16/ 交压(No. 00 nox										
MSB	В7	O/OKL	芯片保留	使用位。默	认为"0",	写"0"为]写入,不要写	≡ "1"						
	В6	RSAD0			000: 通讯001: 配置									
	B5	RSAD1	寄存器地	址位。	011: ADC 100: 测试	010: 滤波器高寄存器 011: ADC 结果寄存器 100: 测试寄存器								
	B4	RSAD2			101: 滤波器低寄存器 110: 零点偏移寄存器 111: 增益系数寄存器									
	В3	R/WL	读写选择	位,"0" ā	表示操作是写	員,"1" 表	示操作是读。							
	B2	PD	写"1",	掉电模式。	写"0",	正常工作模	过。							
	B1	СНН	()	()		1	1					
LSB	В0	CHL	()	1	Į.		0	1					
	芯	片分类	TM7707	TM7708	TM7707 TM7708 TM7707 TM7708 TM7708									
	通道	 先择	AI	N1	AI	N2	AIN1N/COM	MON 内部短路	AIN3					
杉	で正寄る	存器对	寄存品	器对 0	寄存器对 1 寄存器对 0 寄存器对 2									

表 2 配置寄存器 8 位描述 上电/复位状态: 01 Hex

			1											
			工作模式	选择位:										
MSB	В7	MDH	00: 为正	常工作模	三式									
			01: 为自	校正										
		1557	10: 为零): 为零点偏移系统校正										
	В6	MDL	11: 为增益系数系统校正											
			11. /3-6											
	/	PGA 配置	1	2	4	8	16	32	64	128				
	В5	PGA_2	0	0	0	0	1	1	1	1				
	B4	PGA_1	0	0 0 1 1 0 0 1 1										
	В3	PGA_0	0	1	0	1	0	1	0	1				
	DO.	11 /DI	单极性'	1" +FSR	输出 0xFF	FFH, ZERO	=0x0000H,	-FSR=0x0	0000Н,					
	B2	U/BL	双极性'	'0" +FSR	输出 0xFF	FFH, ZERO	=0x8000H,	-FSR=0x0	0000Н,					
	B1	BUFEN	输入缓冲	器使能,	"0"禁止	上,内部组	爱冲器短路	子,"1" 1	使能					
I CD	DO.	CMIO	滤波同步	,默认为	0, 若"1	"对调制	器和数字	滤波器进	行复位。	能从已知				
LSB	RO SYNC	时间点开	一始收集模	拟输入的	采样,到	达系统同	步。							

表 3 滤波器寄存器 16 位描述

	i	滤波器高寄有	子器	滤波器低寄存器
	上电	1/复位状态:	01Hex	上电/复位状态: 00Hex
	滤波器高	高存器		/
MSB	В7	Z0	确保正确揭作 计	这些位上必须写零。否则导致器件的操作非指定。
	В6	Z1	柳水正柳木下,	<u>②三世工艺观司</u> 令。 自则守以福门的床件事相足。
	В5	BWT	AVDD 吸取电流,	减小模拟前端所取的电流,写 1 一样能工作,但为减小从此位必须写 0,除 F _{clkin} =2. 4576MHZ,增益为 8-128 时,此位确保芯片正常工作
	B4	OSCDIS	时钟禁止位。默	认值为 0,若"1"表示 X0 为低电平,可以减少功耗。
	В3	DR11		
	B2	DR10		大,片内数字滤波器提供 Sinc3 (或 (Sinx/x) 3) 滤波器
	B1	DR9		些 位的 12 位数据决定滤波器截止频率、滤波器第一陷波
LSB	В0	DR8		的数据速率。再加 上增益选择,它还可以决定器件的输出
ž	虑波器低	寄存器		分辨率) 滤波器第一陷波发生的频率由下列关系式决定:
MSB	В7	DR7	~ ~	
	В6	DR6		DRO 至 DR11 中代码的十进制等效值, 其范围为 19 至 MHz 的 额定频率 fCLKIN 下, 第一陷波频率的范围从
	В5	DR5	·	MIZ 的 额定频率 ICLAIN 下,另一陷极频率的范围然 Hz。为了确保 TM7707/8 正常工 作,装入这些位的代码值
	B4	DR4	· 必须在此范围内	
	В3	DR3		。 3×1/(输出数据速率)-3dB 频率依照下列关系式由编程
	B2	DR2	的滤波器第一陷	
	B1	DR1		波器−3dB 频率=0. 262 ×滤波器第一陷波频率
LSB	В0	DR0	0.00	AND THE STATE OF T

ADC 结果寄存器是 24 位只读寄存器, 用来存放最新的转换结果,读取数据时,高位先出。**上电/复位状态**: 0000 Hex。

测试寄存器是8位寄存器,用于测试器件。建议用户不要随意对其更改。(上电或复位时自动置入全0)。 上电/复位状态:00 Hex

零点偏移寄存器是 24 位读/写寄存器,TM7707/8 有几组独立的零点偏移寄存器,不同输入通道由对应的零点偏移寄存器负责。24 位数据必须写完后才能传送到零点偏移寄存器。上电/复位状态: 1F4000 Hex增益系数寄存器是 24 位读/写寄存器,TM7707/8 有几组独立的增益系数寄存器,不同输入通道由对应的增益系数寄存器负责。24 位数据必须写完后才能传送到增益系数寄存器。上电/复位状态: 5761AB Hex增益系数寄存器和零点偏移寄存器连在一起使用,可组成一个寄存器对,上面通讯寄存器有介绍。

八、应用电路

TM7707 的基本电路图(图 5),如图所示,模拟电压为+5V/3V;精密的+2.5V/1.225V 基准电压为器件提供参考电压。在数字信号这边,器件被配置成三线工作,CSN 接地。

石英晶体提供主时钟源。R 的阻值为 1MΩ,C1 和 C2 的电容值,这些值一般在 30pF 至 50pF 范围内。 此配置同样适用于 TM7708。

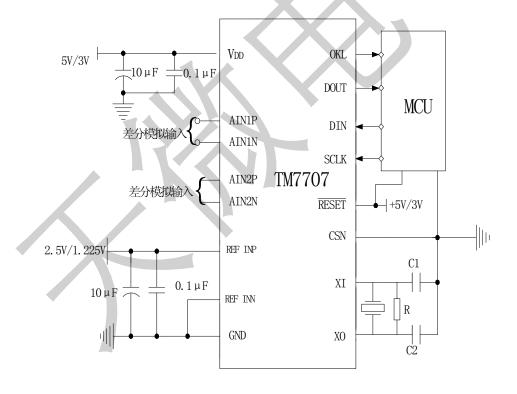


图 5 TM7707 的电路图

九、复位和掉电模式

复位输入电路复位所有的逻辑、数字滤波器和模拟调制器,而将所有的片内寄存器设置到其默认状态。复位的方式,将 RESET 引脚拉低或发送 RESET =0 指令。

通迅寄存器中的PD位允许用户将器件设置在掉电模式下工作,减少功耗,脱离掉电模式后,器件进入正常模式,所有寄存器保持掉电模式之前的状态,不需要重新配置。

十、外接参考电压

REFINP 和 REFINN 为 TM7707/8 提供差分参考电压功能,当以 5V/3V 电源电压工作时,参考电压为+2.5V/1.225V。当参考电压小于 1V 时,器件虽然可以工作,但输出噪声变大,导致性能下降。因此必须保证 REFINP>REFINN,确保器件能工作正常。

十一、误差校正

当环境温度、工作电压、选定的增益、滤波器陷波以及单极性/双极性输入范围发生变化时。必须对器件进行校正,以保证模数转换的正确。TM7707/8 有多种校正选择,可以通过配置寄存器的 MDH 和 MDL 位编程来实现。校正可消除器件上产生的偏置和增益误差。

自校正

当发送自校正命令时,芯片在通讯寄存器指定的通道和设定的增益下进行零点偏移校正和增益系数校正,零点偏移校正时,芯片指定的输入通道内部自动短接(零输入);增益系数校正时,芯片指定的输入通道连接到内部 Vref/选定增益的电压(满量程)。校正完成后,会自动更新零点偏移寄存器和增益系数寄存器的值。同时在校正过程中,OKL 保存高电平,当 OKL 拉低时,表明校正完成,并且此时自动恢复到正常工作模式,即 MDH MDL=00 状态。

系统校正

系统校正可以校正芯片内部及**系**统的偏置误差和增益误差,因为系统校正必须输入的输入信号后进行。系统校正包括偏移误差校正和增益误差校正。

零点偏移误差校正时,必须要求输入为差分电压为 0V,配置寄存器中的 MDH 和 MDL 写入 (1,0), 开始零点偏移。芯片计算出系统的零点偏移误差值,并写入到零点偏移寄存器中。后续工作时给于补偿。

增益系数误差校正时,必须要求输入正满幅度的电压,配置寄存器中的 MDH 和 MDL 写入 (1,1), 开始增益误差校正。芯片计算出系统的增益误差值,并写入到增益系数寄存器中。后续工作时给于补偿。

十二、输出噪声

器件工作在非缓冲模式下,表 4、6 显示了分别 V_{DD} =5V、 V_{DD} =3V 时, V_{REF} =+2.5V/1.225V,以及在-3dB 频率时可选择更新频率下,模拟输入短路时产生的输出噪声参考值。表 5、7 显示了分别 V_{DD} =5V、 V_{DD} =3V 时的分辨率。这些数字所表示的分辨率有效位数(舍入至最接近的 0.5LSB)。

器件工作在缓冲模式下,表 8、10 显示了分别 V_{DD} =5V、 V_{DD} =3V 时, V_{REF} = +2.5V/1.225V,以及在-3dB 频率时可选择更新频率下,模拟输入短路时产生的输出噪声参考值。表 9、11 显示了分别 V_{DD} =5V、 V_{DD} =3V 时的分辨率。这些数字所表示的分辨率有效位数(舍入至最接近的 **0.5LSB**)。

表 4 输出噪声与增益和更新速率的关系(5V电压)

				BU	FEN=0;	俞 出噪声	的典型值	<u>Ι</u> (μV)		
$\mathbf{f}_{ ext{CLKIN}}$	数据更新速率 (Hz)	-3dB 截止频率 (Hz)				增益	益			
	(пг)	(пz)	1	2	4	8	16	32	64	128
2. 4576	5	1.31	0.87	0. 48	0. 24	0. 2	0. 18	0. 17	0. 17	0. 17
2. 4576	10	2. 62	1	0. 78	0. 48	0. 33	0. 25	0. 25	0. 25	0. 25
2. 4576	25	6. 55	1.8	1. 1	0. 63	0.5	0. 44	0. 41	0. 38	0. 38
2. 4576	30	7.86	2. 5	1. 31	0.84	0. 57	0. 46	0. 43	0. 4	0. 4
2. 4576	50	13. 1	4. 33	2.06	1. 2	0. 64	0. 54	0.46	0.46	0. 46
2. 4576	60	15. 72	5. 28	2. 36	1. 33	0.87	0. 63	0. 62	0.6	0. 56
2. 4576	100	26. 2	12. 1	5. 9	2.86	1. 91	1.06	0.83	0.82	0. 76
2. 4576	250	65. 5	127	58	29	15. 9	6. 7	3. 72	1. 96	1. 5
2. 4576	500	131	533	267	137	66	38	20	8. 6	4. 4
2. 4576	1000	262	2850	1258	680	297	131	99	53	28
1	2	0. 52	0.75	0.56	0.31	0. 19	0. 17	0.14	0.14	0. 14
1	4	1. 05	1.04	0.88	0. 45	0. 28	0. 21	0. 21	0.21	0. 21
1	10	2. 62	1.66	1.01	0.77	0. 41	0. 37	0.35	0.35	0.35
1	25	6. 55	5. 2	2.06	1.4	0.86	0. 63	0.61	0. 59	0. 59
1	30	7. 86	7. 1	3. 28	1.42	1. 07	0. 78	0.64	0.61	0.61
1	50	13. 1	19. 4	9. 11	4. 2	2. 45	1. 56	1. 1	0.82	0.8
1	60	15. 72	25	16	6. 5	2.9	1. 93	1. 4	1. 1	0. 98
1	100	26. 2	102	58	25	13.5	5. 7	3. 9	2. 1	1.3
1	200	52. 4	637	259	130	76	33	16	11	6
1	400	104.8	2830	1430	720	334	220	94	54	25

表 5 分辨率与增益和更新速率的关系 (5V 电压)

12.0 /	州平司相重州文	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(3) 43,0		BUFEN=0); 分辨	 率(有效	女位数)		
${ m f}_{\scriptscriptstyle ext{CLKIN}}$	数据更新速率 (Hz)	-3dB 截止频率 (Hz)				t	曾益			
	(112)	(112)	1	2	4	8	16	32	64	128
2. 4576	5	1.31	22.5	22. 5	22. 5	21.5	20. 5	20	19	18
2. 4576	10	2. 62	22.5	21.5	21.5	21	20. 5	19.5	18. 5	17.5
2. 4576	25	6. 55	21.5	21	21	20	19. 5	18. 5	17. 5	16. 5
2. 4576	30	7.86	21	21	20. 5	20	19. 5	18. 5	17. 5	16. 5
2. 4576	50	13. 1	20	20	20	20	19	18. 5	17. 5	16. 5
2. 4576	60	15. 72	20	20	20	19. 5	19	18	17	16
2. 4576	100	26. 2	18.5	18. 5	19	18. 5	18	17. 5	16. 5	15. 5
2. 4576	250	65. 5	15.5	15. 5	15. 5	15. 5	15. 5	15. 5	15. 5	14. 5
2. 4576	500	131	13	13	13	13	13	13	13	13
2. 4576	1000	262	11	11	11	11	11	10.5	10. 5	10.5
1	2	0. 52	22. 5	22	22	21.5	21	20	19	18
1	4	1. 05	22	21. 5	21.5	21	20.5	19.5	18. 5	17.5
1	10	2. 62	21. 5	21. 5	20.5	20. 5	19. 5	19	18	17
1	25	6. 55	20	20	20	19. 5	19	18	17	16
1	30	7.86	19. 5	19. 5	19.5	19	18.5	18	17	16
1	50	13. 1	18	18	18	18	17. 5	17	16. 5	15. 5
1	60	15. 72	17. 5	17. 5	17. 5	17.5	17. 5	17	16	15. 5
1	100	26. 2	15. 5	15. 5	15. 5	15. 5	15. 5	15. 5	15	15
1	200	52. 4	13	13	13	13	13	13	13	12. 5
1	400	104.8	11	11	11	11	10. 5	10.5	10. 5	10. 5

表 6 输出噪声与增益和更新速率的关系 (3V 电压)

				BU	FEN=0;	輸出噪声	的典型值	<u>(μ</u> γ)		
$f_{ ext{CLKIN}}$	数据更新速率	-3dB 截止频率				增益	益			
	(Hz)	(Hz)	1	2	4	8	16	32	64	128
2. 4576	5	1.31	1. 07	0. 68	0. 29	0. 24	0. 22	0. 17	0. 17	0. 17
2. 4576	10	2. 62	1. 69	1. 1	0. 56	0.35	0.33	0. 33	0. 33	0. 33
2. 4576	25	6. 55	3. 03	1. 7	0.89	0. 55	0. 49	0. 46	0.46	0. 45
2. 4576	30	7.86	3. 55	2. 1	1. 1	0. 61	0. 58	0. 57	0. 55	0. 55
2. 4576	50	13. 1	4. 72	2.3	1.5	0.84	0. 7	0. 68	0. 67	0.66
2. 4576	60	15. 72	5. 12	3. 1	1.6	0. 98	0.9	0.7	0. 69	0.68
2. 4576	100	26. 2	9. 68	5. 6	2. 4	1. 3	1. 1	0. 95	0.88	0. 9
2. 4576	250	65. 5	44	31	15	5.8	3. 7	2. 4	1.8	1.5
2. 4576	500	131	304	129	76	33	20	11	6. 3	3
2. 4576	1000	262	1410	715	350	177	101	51	31	12
								ı		
1	2	0. 52	0.86	0. 58	0. 32	0. 21	0.2	0.2	0. 2	0. 2
1	4	1. 05	1. 26	0.74	0.44	0. 35	0.3	0.3	0.3	0.3
1	10	2. 62	1. 68	1. 33	0. 73	0.5	0.49	0. 49	0. 48	0. 47
1	25	6. 55	3. 82	2	1.2	0.88	0.66	0. 57	0. 55	0. 55
1	30	7.86	4. 88	2. 1	1.3	0. 93	0.82	0. 69	0. 68	0. 66
1	50	13. 1	11	4.8	2. 4	1.41	1.4	0. 73	0. 71	0. 7
1	60	15. 72	14. 7	7. 5	308	2.6	1.5	0. 95	0.88	0. 9
1	100	26. 2	61	30	12	6. 1	2.9	2.4	1.8	1.8
1	200	52. 4	275	130	65	33	17	11	6.3	3
1	400	104.8	1435	720	362	175	110	51	31	12

©Titan Micro Electronics www.titanmec.com -10-

表7分辨率与增益和更新速率的关系 (3V电压)

			BUFEN=0;分辨率(有效位数)									
$f_{\scriptscriptstyle ext{CLKIN}}$	数据更新速率 (Hz)	-3dB 截止频 率(Hz)				均	曾益					
		. ,	1	2	4	8	16	32	64	128		
2. 4576	5	1.31	21	21	21	20	19. 5	20	19	18		
2. 4576	10	2. 62	20. 5	20	20	19. 5	19	18	17	16		
2. 4576	25	6. 55	19.5	19. 5	19.5	19	18. 5	17.5	16. 5	15. 5		
2. 4576	30	7.86	19.5	19	19	18. 5	18	17	16	15		
2. 4576	50	13. 1	19	19	18. 5	18. 5	18	17	16	15		
2. 4576	60	15. 72	19	18. 5	18	18	17. 5	17	16	18		
2. 4576	100	26. 2	18	18	18	18	17	16. 5	15. 5	14. 5		
2. 4576	250	65. 5	16	15. 5	15. 5	15. 5	15. 5	15	14. 5	14. 5		
2. 4576	500	131	13	13	13	13	13	13	12. 5	12. 5		
2. 4576	1000	262	11	11	11	11	10. 5	10.5	10. 5	10. 5		
1	2	0. 52	21.5	21	21	20. 5	19. 5	18.5	17. 5	16. 5		
1	4	1. 05	21	20. 5	20. 5	20	19	18	17	16		
1	10	2. 62	20. 5	20	20	19	18. 5	17. 5	16. 5	15. 5		
1	25	6. 55	19. 5	19. 5	19	18. 5	18	17	16	15		
1	30	7.86	19	19	19	18. 5	17. 5	17	16	15		
1	50	13. 1	17. 5	17. 5	17. 5	17. 5	17	16	15	14. 5		
1	60	15. 72	17	17	17	16. 5	16	16	14. 5	14		
1	100	26. 2	15. 5	15. 5	15. 5	15. 5	15. 5	15. 5	15	13. 5		
1	200	52. 4	13	13	13	13	13	13	12. 5	12. 5		
1	400	104.8	11	11	11	11	10. 5	10. 5	10. 5	10. 5		

©Titan Micro Electronics www.titanmec.com -11-

表 8 输出噪声与增益和更新速率的关系 (5V 电压)

					BUFEN=1	; 输出噪声	古的典型值	Ĺ (μV)				
$\mathrm{f}_{\scriptscriptstyle ext{CLKIN}}$	数据更新速率 (Hz)	-3dB 截止频 率(Hz)	增益									
			1	2	4	8	16	32	64	128		
2. 4576	5	1.31	0. 99	0. 68	0. 46	0. 26	0. 26	0. 26	0. 26	0. 26		
2. 4576	10	2. 62	1.5	0. 95	0. 63	0.41	0.39	0. 36	0. 36	0. 36		
2. 4576	25	6. 55	2. 5	1. 7	0.88	0. 75	0. 57	0. 57	0. 57	0. 56		
2. 4576	30	7. 86	2. 9	1.8	1	0.87	0. 75	0.72	0. 72	0. 71		
2. 4576	50	13. 1	4. 2	2. 5	1. 5	1.1	0. 94	0. 94	0. 94	0.87		
2. 4576	60	15. 72	6. 1	2. 9	2	1.2	1	0. 97	0. 95	0. 94		
2. 4576	100	26. 2	13.8	6. 5	3. 5	2. 2	1. 3	1.2	1.3	1. 1		
2. 4576	250	65. 5	87	56	25	11	5. 7	3. 6	2. 4	2. 1		
2. 4576	500	131	508	241	117	73	34	16	8. 5	5. 2		
2. 4576	1000	262	2860	1700	745	480	197	94	53	23		

表 9 分辨率与增益和更新速率的关系 (5V 电压)

		13			BUFEN=	1;分辨率	図 (有效/	位数)		
${ m f}_{\scriptscriptstyle ext{CLKIN}}$	数据更新速率 (Hz)	-3dB 截止频 率(Hz)				增	益			
			1	2	4	8	16	32	64	128
2. 4576	5	1. 31	22. 5	22	21.5	21	20	19	18	17
2. 4576	10	2. 62	21.5	21.5	21	20. 5	19.5	18. 5	17. 5	16. 5
2. 4576	25	6. 55	21	20. 5	20. 5	19.5	19	18	17	16
2. 4576	30	7. 86	20. 5	20. 5	20	19.5	18.5	17. 5	16. 5	15. 5
2. 4576	50	13. 1	20	20	19. 5	19	18.5	17. 5	17. 5	15. 5
2. 4576	60	15. 72	19.5	19. 5	19. 5	19	18.5	17. 5	16. 5	15. 5
2. 4576	100	26. 2	18.5	18. 5	18.5	18	18	17	16	15
2. 4576	250	65. 5	16	15. 5	15. 5	15. 5	15. 5	15. 5	15	14
2. 4576	500	131	13.5	13. 5	13. 5	13	13	13	13	13
2. 4576	1000	262	11	10. 5	10.5	10. 5	10. 5	10. 5	10. 5	10. 5

©Titan Micro Electronics

www.titanmec.com

表 10 输出噪声与增益和更新速率的关系 (3V 电压)

	HI CH NEV TO THE	<u> </u>	BUFEN=1;输出噪声的典型值(μV)							
$\mathbf{f}_{ ext{ iny CLKIN}}$	数据更新速率 (Hz)	-3dB 截止 频率(Hz)				增	益			
			1	2	4	8	16	32	64	128
2. 4576	5	1.31	1. 16	0. 76	0. 34	0. 29	0. 29	0. 28	0. 26	0. 26
2. 4576	10	2.62	1.5	0. 95	0. 63	0. 41	0.39	0. 36	0. 36	0. 36
2. 4576	25	6. 55	2. 5	1. 7	0.88	0. 75	0. 57	0. 57	0. 57	0. 56
2. 4576	30	7.86	3. 7	2. 2	1.3	0. 76	0. 68	0.66	0. 66	0. 66
2. 4576	50	13. 1	4. 5	3	1. 7	1	0. 92	0. 9	0.89	0.89
2. 4576	60	15. 72	5. 3	3. 3	1.8	1. 1	1	0. 96	0. 96	0. 96
2. 4576	100	26. 2	10	4. 9	3. 1	1.5	1. 2	1.2	1.2	1. 2
2. 4576	250	65. 5	47	29	15	7. 5	4. 7	2. 6	2. 5	1. 5
2. 4576	500	131	300	171	74	25	21	8. 6	5. 6	3. 1
2. 4576	1000	262	1722	723	380	230	93	55	30	12

表 11 分辨率与增益和更新速率的关系 (3V 电压)

			BUFEN=1;分辨率(有效位数)							
$\mathbf{f}_{ ext{CLKIN}}$	数据更新速率 (Hz)	-3dB 截止 频率(Hz)		增益						
			1	2	4	8	16	32	64	128
2. 4576	5	1. 31	21	20. 5	20	20	19	18	17	16
2. 4576	10	2. 62	21. 5	21. 5	21	20. 5	19. 5	18.5	17.5	16. 5
2. 4576	25	6. 55	21	20. 5	20. 5	19.5	19	18	17	16
2. 4576	30	7.86	19. 5	19	19	18.5	18	17	16	15
2. 4576	50	13. 1	19	18. 5	18. 5	18	17. 5	16. 5	15. 5	14. 5
2. 4576	60	15. 72	19	18. 5	18. 5	18	17	16. 5	15. 5	14. 5
2. 4576	100	26. 2	18	18	17. 5	17.5	17	16	15	14
2. 4576	250	65. 5	15. 5	15. 5	15. 5	15. 5	15	15	14	13.5
2. 4576	500	131	13. 5	13	13	13	13	13	13	12.5
2. 4576	1000	262	10. 5	10. 5	10. 5	10. 5	10. 5	10. 5	10.5	10.5

©Titan Micro Electronics

www.titanmec.com

+三、极限参数(TA = +25℃,除非另有说明)

参数名称	参数符号	极限值	单 位
逻辑电源电压	VDD	-0.3V ∼7	V
模拟输入电压	Vin	0.2 1/ 10.2	V
数字输入电压	vin	$-0.3 \sim V_{DD} +0.3$	V
数字输出电压	Vout	-0.3 ∼V _{DD} +0.3	V
工作温度范围	Topr	-40~85	°C
储存温度范围	Tstg	−65~150	°C
结温	Tj	150	°C
静电 ESD	人体模式 (HBM)	4000	V

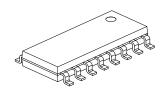
十四、电特性

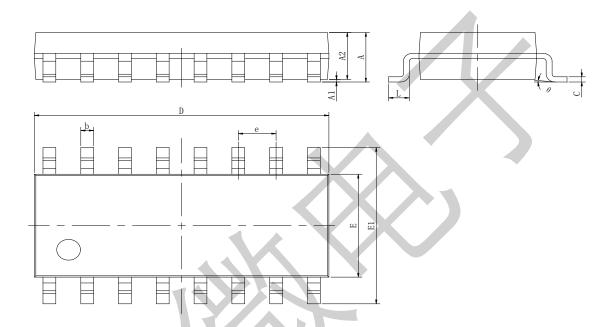
V ₁₀ =+3V 或+5V, REF INF 除非另有说明)					
参数名称	测试条件	最小值	典型值	最大值	单位
分辨率	/ロップンも2か 田 //カンか / 0.01		24		Bits
积分非线性	保证滤波器陷波<60hz		0	± 0.003	%of FSR
单极性失调漂移			0. 5		μV/°C
双极性零漂移	PGA=1-4		0.5		μV/℃
X 似	PGA=8-128		0.1		μV/°C
满标度漂移			0.5		μV/℃
增益误差漂移			0. 5		ppm of FSR/ ℃
双极性负满标度误差		0	± 0.001	± 0.003	%of FSR/℃
双极性负满标度漂移			1		μV/℃
双拟			0.6		μV/℃
REF IN 绝对/共模电		0		$V_{\scriptscriptstyle DD}$	V
压					
 AIN 绝对/共模电压	BUFEN=0	-0. 03		V _{DD} +0.03	V
MIN 纪州/ 八俣电压	BUFEN=1	0.05		V _{DD} -1.5	V
AIN 输入电流				1	nA
AIN 采集电容				10	pF
AIM 关八由厅	单极性输入	0		V _{REP} /GAIN	
AIN 差分电压	双极性输入	-V _{REP} /GAIN		V _{REP} /GAIN	
AIN 稳定采样率	增益 1-4	GA	$IN \times f_{CLKIN}/6$	4	
MIN 応比不什半	增益 8-128		$f_{ ext{CLKIN}}/8$		
REFINP—REFINN 差值	VDD=3V, Vref=1.225V	1		1.75	V
KEITINI KEITINI 左祖	VDD=5V, Vref=2.5V	1		3. 5	V

24bit 模数转换器 TM7707/8

			12 (20	11 4 3/V HH					
REF INN 输入稳定采 样率			$\rm f_{CLKIN}/64$						
输入电压 (除 SCLK and XI)									
WII	$V_{DD}=5V$			0.8	V				
VIL	V _{DD} =3V			0.4	V				
VIH		2. 0			V				
	施密特魚	虫发输入 SCLI	ζ						
V_{T^+}		1. 4		3					
V _T	$V_{DD}=5V$	0.8		1.4					
V_{T^+} V_{T}		0. 4		0.8	V				
V_{T^+}		1		2. 5	V				
V_{T}	$V_{DD}=3V$	0. 4		1.1					
V_{T^+} V_{T}		0. 375		0.8					
		XI							
输入低电平	$V = \square V$			0.8	V				
输入高电平	$V_{DD}=5V$	3. 5							
输入低电平	V -2V			0.4					
输入高电平	$V_{DD}=3V$	2. 5							
粉堪绘山绝冠	单极性			二进制					
数据输出编码	双极性		偏置	是 二进制码					

TM7707/8


电源参数特性


参数名称		测试条件		最小值	典型值	最大值	单位
> X 114	BUFEN	$f_{ ext{CLKIN}}(ext{MHZ})$	增益				
电源电压 3V	时,数字 I0:	接口或控制站	岩口接地或接	Z VDD (XI	和 OSCDI	(S=1)	
	0	1	1-128			0.32	
	1	1	1-128			0.6	
电源电流	0	2. 4576	1-4			0.4	mA
电你电机	0	2. 4576	8-128			0.6	ША
	1	2. 4576	1-4			0.7	
	1	2. 4576	8-128			1.1	
电源电压 5V	时,数字 I0	接口或控制站	岩口接地或接	ŧ VDD (XI	和 OSCDI	(S=1)	
	0	1	1-128			0. 45	
	1	1	1-128			0. 7	mA
电源电流	0	2. 4576	1-4			0.6	
电你电机	0	2. 4576	8-128			0.85	
	1	2. 4576	1-4			0.9	
	1	2. 4576	8-128			1.3	
掉电模式电流	$V_{DD}=5V$, $XI=0V$ $/V_{DD}$.					16	
挥电偿八电机	V _{DD} =3°	V, XI=0V /	V _{DD} .			8	uA
	电源	电压	增益		86		
	VDD	=3V	1				
	VDD	=3V	2		78		
	VDD:	=3V	4		85		
电源抑制比	VDD=3V		8-128		93		dB
	VDD=5V		1		90		
	VDD=5V		2		78		
	VDD=5V		4		84		
	VDD	=5V	8-128		91		

十五、封装示意图

SOP16

Symbol	Dimensions In	n Millimeters	Dimensions In Inches		
Syllidor	Min	Max	Min	Max	
A	1. 350	1. 750	0. 053	0. 069	
A1	0. 100	0. 250	0. 004	0. 010	
A2	1. 350	1. 550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0. 007	0. 010	
D	9. 800	10. 200	0. 386	0. 402	
E	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270	(BSC)	0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0. 050	
θ	0°	8°	0°	8°	