

GENERAL DESCRIPTION

The CL9193 is a low-dropout voltage regulator designed for portable and wireless applications that require high PSRR, low quiescent current and excellent line and load transient response.

The CL9193 is designed to work with small 1uF input and output ceramic capacitors.

: 2.0V ~ 6.0V

: 70dB @ 1KHz

: 150mV @ 100mA

:Current Limit &

Short Protect

: 40uA (Typ.)

: 300mA

: < 0.1uA

The CL9193 consumes less than 0.1uA in shutdown mode. The CL9193 is available in 5 pin SOT23-5L packages. The output standards of 1.2V, 1.3V, 1.5V, 1.8V, 2.0V, 2.5V, 2.7V, 2.8V, 3.0V, and 3.3V are available.

FEATURES

Input Range

High PSRR

Dropout Voltage

Protection

CDMA/GSM mobile phone
PDAs/MP3

APPLICATIONS

- WLAN and bluetooth appliances
- Cordless telephones
- Battery powered portable devices

SOT23-5L Package Available

TYPICAL APPLICATIONS

Maximum Output Current

Low Quiescent Current

Shutdown Mode Current

Operation Ambient Temperature : -40 ~ +85°C

PIN CONFIGURATION

SOT23-5L

PIN FUNCTIONS

SOT23-5	PIN NAME	FUNCTIONS
1	VIN	Power Input
2	GND	Ground
3	CE	Chip Enable
4	NC	No Connection
5	Vout	Output

ESD & Latch-up Level

HBM ESD	4000V
MM ESD	400 V
Latch-up	400mA

CL9193 300mA High PSRR LDO

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNITS
INPUT VOLTAGE	VIN	6	V
OUTPUT CURRENT	IOUT	500	mA
OUTPUT VOLTAGE	Vout	GND-0.3 ~ VIN +0.3	V
POWER DISSIPATION (SOT23-5L)	Pd	400	mW
OPERATING TEMP.	Topr	-25 ~ +85	°C
STORAGE TEMP.	Tstg	-40 ~ +125	°C
LEAD TEMP.	Tsolder	260°C, 10s	

ELECTRICAL CHARACTERISTICS

(VIN = VOUT +1V,CIN=COUT=1uF,Ta=25°C, unless otherwise stated)

PARAMETER	SYMBOL	CONDITIO	ONS	MIN	ТҮР	МАХ	UNITS
Input Voltage	Vin					6.0	V
Output Voltage	Vout	IOUT=40mA, Vo	OUT<1.5V	X 0.97	VOUT(T) ^{Note1}	X 1.03	V
		IOUT=40mA, Vo	OUT≥1.5V	X 0.98	VOUT(T) ^{Note1}	X 1.02	V
Max. Output Current	lout(max)	VIN=VOUT	-+1V	300			mA
	Load Regulation $\Delta VOUT$	VIN=VOUT+1V 1mA≤IOUT≤100mA	VOUT=1.2V		20		mV
Load Regulation	ΔVOUT		VOUT=2.5V		25		
			VOUT=3.3V		30		
			VOUT=1.2V		600		mV
Dropout Voltage	Vdif	IOUT =100mA	VOUT=2.5V		200		mV
		V	VOUT=3.3V		150		
Supply Current	IQ	VIN= VOUT +1V			40		uA
Standby Current	ISTDBY	VCE=0	V		<0.1		uA
Line Regulation	$\frac{\Delta \text{Vout}}{\Delta \text{Vin * Vout}}$	IOUT =40mA VOUT+1V≤V			0.05		%/V
CE "H" Threshold	VCEH	VIN=5	/	1.4			
CE "L" Threshold	VCEL	VIN=5	/			0.4	
Ripple Rejection Rate	PSRR	VIN= [VOUT +1]V IOUT =40mA,f=1kH			70		dB

NOTE:

1. VOUT(T)=Specified Output Voltage

PACKAGE INFORMATION: SOT-23-5L

Symbol	Dimensions In Millim	eters	Dimensions In Inches		
- J	Min	Max	Min	Мах	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950 (BSC)		0.037 (BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
r	0°	8°	0°	8°	

- The information described herein is subject to change without notice.
- CHIPLINK Technology is not responsible for any problems caused by circuits or diagrams described hereinwhose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of CHIPLINK Technology is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of CHIPLINK Technology
- Although CHIPLINK Technology exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.