

KAQW216 Series 8PIN 600V N.O. TYPE

SOLID STATE RELAY-MOSFET OUTPUT

Description

The KAQW216 series contains two normally open switches that can be used as two independent SPST relays or as one DPST relay. The relay is constructed using a GaAlAs LED for actuation control and an integrated monolithic dies for the switch output. The die, fabricated in a high-voltage dielectrically isolated technology, is comprised of a photodiode array, switch control circuitry and MOSFET switches.

3 —

• Features

- 1. Normally open, double pole single throw
- 2. Control 600V AC or DC voltage
- 3. Switch 120mA loads
- 4. Controls low-level analog signals
- 5. High sensitivity, low ON resistance
- 6. Low-level off state leakage current
- 7. High isolation voltage 5KV (DIP / SMD)
- 8. Pb free and RoHS compliant
- 9. MSL class 1
- 10. Agency Approvals :
 - UL Approved (No. E169586): UL1577
 - C-UL Approved (No. E169586)
 - VDE Approved (No. 40053989): EN60747-5-5

• Application

- Telecommunications (PC, electronic notepad)
- Modem
- Telephone equipment
- Security equipment
- Sensors
- Measuring and testing equipment
- Factory automation equipment
- High speed inspection machines

KAQW216 Series 8PIN 600V N.O. TYPE SOLID STATE RELAY-MOSFET OUTPUT

Outside Dimension

Unit : mm

3. Small outline for surface mount type.

KAQW216S

2. Surface mount type.

KAQW216A

TOLERANCE : ±0.2mm

• Device Marking

Notes :

cosmo

W216	□(Blank): DIP or SMD
W216S	S : SOP
YWW	Y : Year code / W : Week code

KAQW216 Series

8PIN 600V N.O. TYPE SOLID STATE RELAY-MOSFET OUTPUT

	Item	Symbol	Rating		U	nit	
	Continuous forward current	I _F	50		n	nA	
	Peak forward current	I _{FP}	1			A	
Input	Reverse voltage	V _R	5		V		
	Power dissipation	P _{in}	100		mW		
	Derate linearly from 25° C	-	1.3		mW/°C		
	Breakdown voltage	V _B	600		V		
Output	Continuous load current	۱ _L	120		mA		
	Power dissipation	P _{out}	500	mW			
Isolation voltage		V	KAQW216S		KAQW216		
		V _{iso}	1500Vrms		5000Vrms		
Isolation resistance (Vio=500V)		R _{iso}	$\ge 10^{10}$		Ω		
Total power dissipation		Pt	550		mW		
Derate linearly from 25° C		-	2.5		mW/°C		
Operating temperature		T _{opr}	-40 to +85		°C		
Storage	temperature	T _{stg}	-40 to +125	°C			
Junction temperature		Tj	100		°C		
Soldering temperature 10 seconds		T _{sot}	260		°C		
Elec	tro-optical Characteristic	s				٦)	Гa=25°(
	Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
	Forward voltage	V _F	I _F =10mA	-	1.2	1.5	V
Input	Operation input current	I _{FON}	V _L =20V, I _L =100mA	-	-	3.0	mA
	Recovery input current	I _{FOFF}	V _L =20V, I _L ≦5µA	0.2	-	-	mA
Output	Breakdown voltage	V _B	Ι _в =50μΑ	600	-	-	V
	Off-state leakage current	I _{LEAK}	V _L =600V, I _F =0mA	-	0.2	1.0	μA
I/O capacitance		C _{iso}	V _B =0V, f=1MHz	-	6	-	pF
ON resistance		R _{ON}	I _F =10mA, I _L =100mA	-	35	80	Ω
Turn-on time		T _{ON}	I _F =10mA, V _L =20V	-	0.3	1.0	ms
Turn-off time		T _{OFF}	I _L =100mA, t=10ms	-	0.1	1.5	ms

• Turn-on / Turn-off Time

• Schematic and Wiring Diagrams

Schematic Config	tput Juration	d Connection	Wiring Diagrams
	Load Load AC DC	;	Wiring Diagrams(1) Two independent 1 Form A use $\bigvee \qquad \qquad$

KAQW216 Series

8PIN 600V N.O. TYPE

SOLID STATE RELAY-MOSFET OUTPUT

Ambient Temperature Ta (°C)

Ambient Temperature Ta (°C)

Fig.2 On Resistance vs. Ambient Temperature

Ambient Temperature Ta (°C)

Fig.4 Turn-off Time vs. Ambient Temperature

Ambient Temperature Ta (°C)

Fig.6 LED Turn-off Current vs. Ambient Temperature

KAQW216 Series 8PIN 600V N.O. TYPE SOLID STATE RELAY-MOSFET OUTPUT

Fig.7 **LED Dropout Voltage** vs. Ambient Temperature

Ambient Temperature Ta (°C)

LED Forward Current (mA)

Turn-off Time Fig.11 vs. LED Forward Current

Fig.8 **Voltage vs. Current Characteristics** of Output at MOSFET Portion

Voltage (V)

Output Capacitance

Fig.12 vs. Applied Voltage

Applied Voltage (V)

• Using Methods

Examples of resistance value to control LED forward current (I_F=5mA)

E	R
3.3V	Approx. 330 Ω
5V	Approx. 640 Ω
12V	Approx. 1.9K Ω
15V	Approx. 2.5K Ω
24V	Approx. 4.1K Ω

- 1. LED forward current must be more than 5mA, at E min.
- 2. LED forward current must be less than 50mA $^{\rm ,}$ at E max.

Regulate the spike voltage generated on the inductive load as follows :

• Recommended Soldering Conditions

- (a) Infrared reflow soldering :
 - Peak reflow soldering :
 - Time of peak reflow temperature:
 - Time of temperature higher than 230°C :
 - Time to preheat temperature from 180~190°C:
 - Number of reflows :
 - Flux :

260°C or below (package surface temperature)

10 sec

30-60 sec

60-120 sec

Two

Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

Recommended Temperature Profile of Infrared Reflow

(b) Wave soldering :

- Temperature :
- Time :
 - : 10 seconds or less
- Preheating conditions:

Number of times :

One

Flux : Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

(c) Cautions :

Fluxes : Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

260°C or below (molten solder temperature)

 120° C or below (package surface temperature)

Avoid shorting between portion of frame and leads.

• Numbering System

KAQW216 X (Y)

Note :

KAQW216 = Part No.

X = Lead form option ($blank \cdot S \text{ or } A$)

Y = Tape and reel option ($TL \cdot TR$)

Option	Description	Packing quantity
A (TL)	surface mount type package + TL tape & reel option	1000 units per reel
A (TR)	surface mount type package + TR tape & reel option	1000 units per reel
S (TL)	small outline for surface mount type package + TL tape & reel option	2000 units per reel
S (TR)	small outline for surface mount type package + TR tape & reel option	2000 units per reel

Recommended Pad Layout for Surface Mount Lead Form

1. Surface mount type.

2. Small outline for surface mount type. 8-pin SOP

Unit : mm

• 8-pin SMD Carrier Tape & Reel

2.0

16.4

• 8-pin SOP Carrier Tape & Reel

ø20.2

2.0

16.4

• Application Notice

The statements regarding the suitability of products for certain types of applications are based on cosmo's knowledge of general applications of cosmo products. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to verify the specifications are suitable for use in a particular application. Customers are solely responsible for all aspects of their own product design or applications. The parameters provided in the datasheet may vary in different applications and performance may vary over time. All operating parameters (including typical parameters) must be validated by customer's technical experts for different applications. cosmo assumes no liability for customer' product design or applications. Product specifications do not expand or otherwise change cosmo's terms and conditions of purchase, including but not limited to the warranty expressed therein.

When using cosmo products, please comply with safety standards and instructions. cosmo has no liability and responsibility to the damage caused by improper use of the instructions specified in the specifications.

cosmo products are designed for use in general electronic equipment such as telecommunications, office automation equipments, personal computers, test and measurement equipments, consumer electronics, industrial control, instrumentation, audio, video.

cosmo devices shall not be used in equipment that requires higher level of reliability and safety, such as nuclear power control equipment, telecommunication equipment(trunk lines), space application, medical and other life supporting equipments, and equipment for aircraft, military, automotive or any other application that can cause human injury or death.

cosmo reserves the right to change the specifications, data, characteristics, structure, materials and other contents at any time without notice. Please contact cosmo to obtain the latest specification.

cosmo disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.