Ultra Field Stop IGBT, 1200 V, 60 A

FGY60T120SQDN

General Description

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Ultra Field Stop Trench construction, and provides superior performance in demanding switching applications, offering both low on-state voltage and minimal switching loss. The IGBT is well suited for UPS and solar applications. Incorporated into the device is a soft and fast co-packaged free wheeling diode with a low forward voltage.

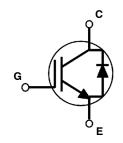
Features

- Extremely Efficient Trench with Field Stop Technology
- Maximum Junction Temperature $T_J = 175^{\circ}C$
- Low Saturation Voltage: $V_{CE(sat)} = 1.7 \text{ V} (Typ.) @ I_C = 60 \text{ A}$
- 100% of the Parts Tested for I_{LM} (Note 1)
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- RoHS Compliant

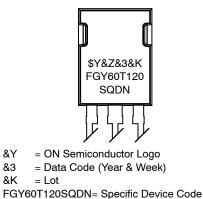
Applications

• Solar Inverter, UPS

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)							
Unit							
V							
V							
V							
А							
А							
А							
А							
А							
А							
А							
W							
W							
°C							
°C							
°C							


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. VCC = 800 V, V_{GE} = 15 V, I_C = 240 A, \dot{R}_{G} = 68 Ω , Inductive Load 2. Repetitive rating: Pulse width limited by max. Junction temperature


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

&Y

&3 &K

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

1

THERMAL CHARACTERISTICS

Symbol	Parameter	FGY60T120SQDN	Unit
R _{θJC} (IGBT)	Thermal Resistance, Junction to Case, Max.	0.29	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case, Max.	0.42	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	°C/W

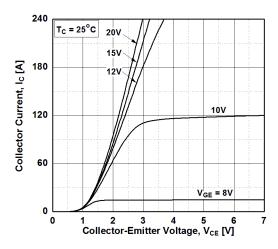
ELECTRICAL CHARACTERISTICS (T_C = $25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
OFF CHARA	CTERISTICS		•	•		
BV _{CES}	Collector to Emitter Breakdown Voltage	V_{GE} = 0V, I_C = 500 μ A	1200	-	-	V
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	400	μA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±200	nA
ON CHARAC	CTERISTICS					•
V _{GE(th)}	G-E Threshold Voltage	I_C = 400 μ A, V_{CE} = V_{GE}	4.5	5.5	6.5	V
		I _C = 60 A _, V _{GE} = 15 V	-	1.7	1.95	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_{C} = 60 \text{ A}, V_{GE} = 15 \text{ V}, T_{C} = 175^{\circ}\text{C}$	-	2.3	-	v
	HARACTERISTICS		ļ	•	ļ	
Cies	Input Capacitance		-	7147	-	pF
C _{oes}	Output Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	-	203	-	pF
C _{res}	Reverse Transfer Capacitance	1 – 1 Wil 12	-	114	-	pF
SWITCHING	CHARACTERISTICS	•			•	•
t _{d(on)}	Turn–On Delay Time		-	52	-	ns
tr	Rise Time	V_{CC} = 600 V, I _C = 60 A, R _G = 10 Ω,	-	84	-	ns
td(off)	Turn-Off Delay Time	V _{GE} = 15 V,	_	296	-	ns
t _f	Fall Time	Inductive Load, $T_C = 25^{\circ}C$	-	56	-	ns
Eon	Turn-On Switching Loss		-	5.15	-	mJ
Eoff	Turn-Off Switching Loss		-	1.82	-	mJ
Ets	Total Switching Loss		-	6.97	-	mJ
td(on)	Turn-On Delay Time		-	40	-	ns
t _r	Rise Time	$V_{CC} = 600 \text{ V}, \text{ I}_{C} = 60 \text{ A}, \text{ R}_{G} = 10 \Omega,$	-	72	_	ns
td(off)	Turn-Off Delay Time	V _{GE} = 15 V,	-	324	_	ns
t _f	Fall Time	Inductive Load, T _C = 175°C	-	144	-	ns
Eon	Turn-On Switching Loss		-	7.18	-	mJ
Eoff	Turn-Off Switching Loss		-	3.1	-	mJ
Ets	Total Switching Loss		-	10.28	-	mJ
Q_{g}	Total Gate Charge		-	311	-	nC
Qge	Gate to Emitter Charge	$V_{CE} = 600 \text{ V}, I_C = 60 \text{ A}, V_{GE} = 15 \text{ V}$	-	57	_	nC
Qgc	Gate to Collector Charge		-	153	_	nC

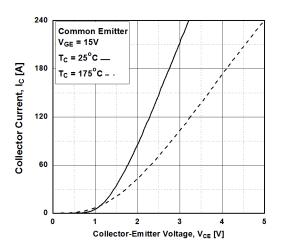
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

www.onsemi.com 15867339858

ELECTRICAL CHARACTERISTICS OF THE DIODE ($T_C = 25^{\circ}C$ unless otherwise noted)


Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
	Diada Fasa and Mallana		T _C = 25°C	-	3.4	4	
V _{FM}	Diode Forward Voltage		T _C = 175°C	-	3.2	-	V
t _{rr}			T _C = 25°C	-	91	-	
	Diode Reverse Recovery Time		T _C = 175°C	-	309	-	ns
Q _{rr}	Diada Davaraa Daaayan Charga	I _F = 60 A	T _C = 25°C	_	860	-	nC
	Diode Reverse Recovery Charge		T _C = 175°C	-	4902	-	110
I _{rrm}	Diada Davaras Dasavan Current		T _C = 25°C	-	19	-	А
	Diode Reverse Recovery Current		T _C = 175°C	-	32	-	

PACKAGE MARKING AND ORDERING INFORMATION


Part Number	Top Marking	Package	Quantity
FGY60T120SQDN	FGY60T120SQDN	TO-247-3LD (Pb-Free)	30/Tube

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Typical Output Characteristics

Figure 3. Typical Saturation Voltage Characteristics

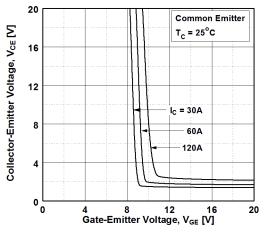
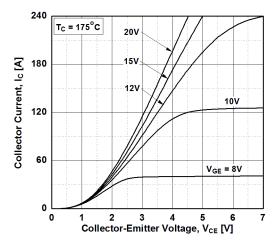



Figure 5. Saturation Voltage vs. V_{GE}

Figure 2. Typical Output Characteristics

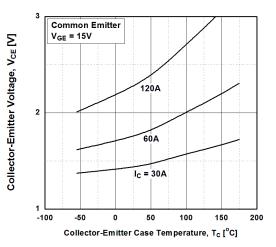


Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

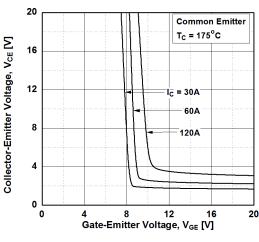
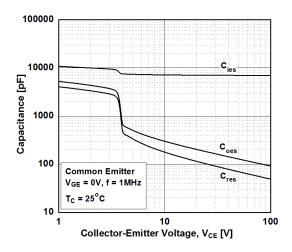



Figure 6. Saturation Voltage vs. V_{GE}

<u>www.onsemi.com</u> 158673⁴39858

TYPICAL PERFORMANCE CHARACTERISTICS

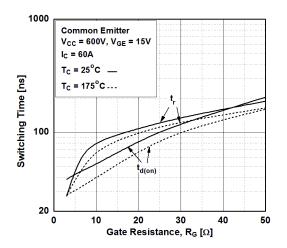


Figure 9. Turn-on Characteristics vs. Gate Resistance

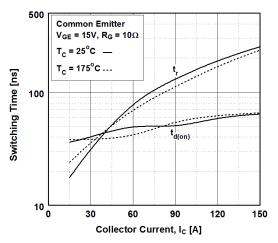


Figure 11. Turn-on Characteristics vs. Collector Current

<u>www.onsemi.com</u> 158673⁵39858

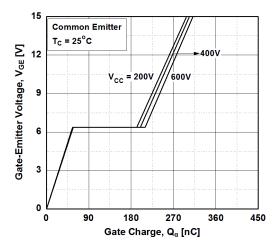


Figure 8. Gate charge Characteristics

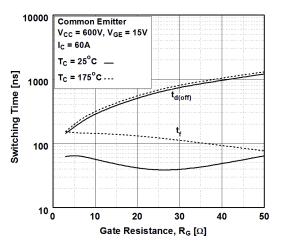


Figure 10. Turn-off Characteristics vs. Gate Resistance

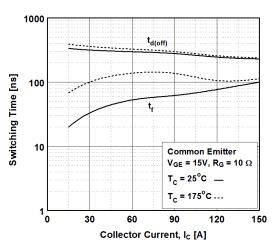
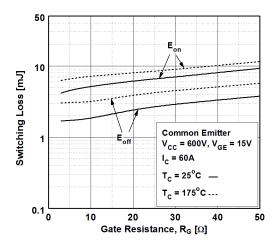



Figure 12. Turn-off Characteristics vs. Collector Current

TYPICAL PERFORMANCE CHARACTERISTICS

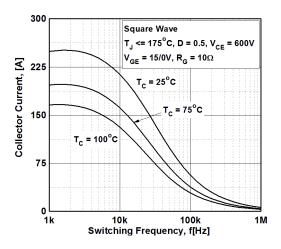


Figure 15. Load Current vs. Frequency

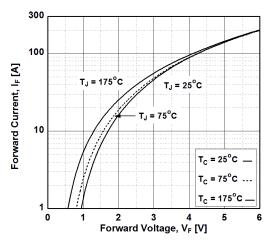


Figure 17. Forward Characteristics

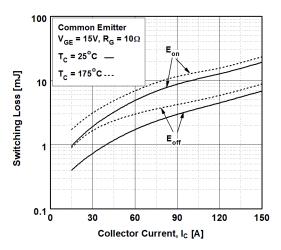
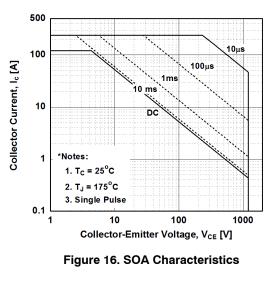
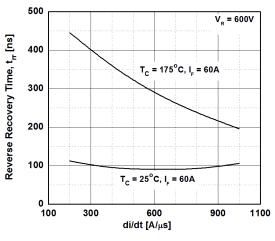




Figure 14. Switching Loss vs. Collector Current

TYPICAL PERFORMANCE CHARACTERISTICS

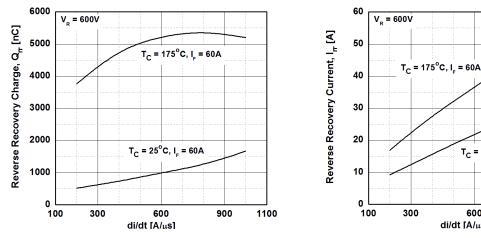


Figure 19. Reverse Recovery Charge vs. di_F/dt

600

 $T_{C} = 25^{\circ}C, I_{F} = 60A$

900

1100

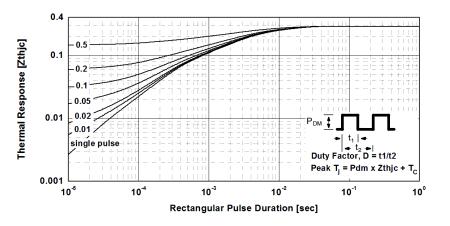


Figure 21. Transient Thermal Impedance if IGBT

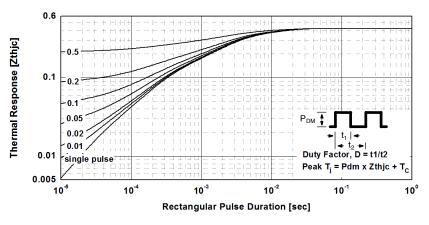
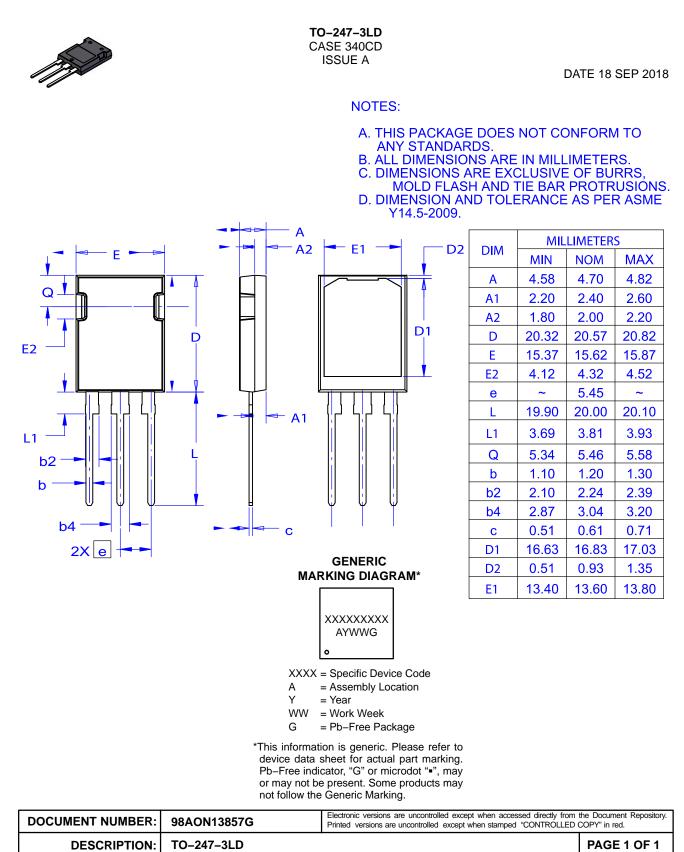



Figure 22. Transient Thermal Impedance if Diode

www.onsemi.com 15867339858

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

15867339858

www.onsemi.com

ON Semiconductor and 🕕 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any product patent. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any sequentized applications had of the office or unauthorized for use as a critical component in life support systems, and distributors harmless against all claims, costs, damages, and eveness and reasonable atomety fees arising out of directly any different application in the function of the officers, went fisch expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even is such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

15867339858