

1.1W Audio Power Amplifier with Shutdown Mode

FEATURES

- No output coupling capacitors, bootstrap capacitors, or snubber circuits are necessary
- Small Outline (SOP) packaging
- Compatible with PC power supplies
- Thermal shutdown protection circuitry
- Unity-gain stable
- External gain configuration capability

Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty
LM4861PG	DIP8	LM4861	TUBE	2000pcs/Box
LM4861DRG	SOP8	LM4861	REEL	2500pcs/Reel
LM4861DGKRG	MSOP8	LM4861	REEL	3000pcs/Reel

DESCRIPTION

The LM4861 is a bridge-connected audio power amplifier capable of delivering 1.1W of continuous average power to an 8Ω load with 1% THD+N using a 5V power supply.

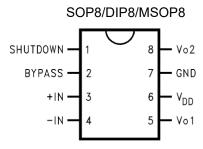
Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components using surface mount packaging. Since the LM4861 does not require output coupling capacitors, bootstrap capacitors, or snubber networks, it is optimally suited for low-power portable systems.

The LM4861 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism.

The unity-gain stable LM4861 can be configured by external gain-setting resistors for differential gains of up to 10 without the use of external compensation components. Higher gains may be achieved with suitable compensation.

APPLICATIONS

- Personal computers
- Portable consumer products


- Self-powered speakers
- Toys and games

KEY SPECIFICATIONS

- THD+N for 1kHz at 1W continuous average output power into 8Ω 1.0% (max)
- Output power at 10% THD+N at 1kHz into 8Ω 1.5 W (typ)
- Shutdown Current 0.6μA (typ)

Connection Diagram

Typical Application

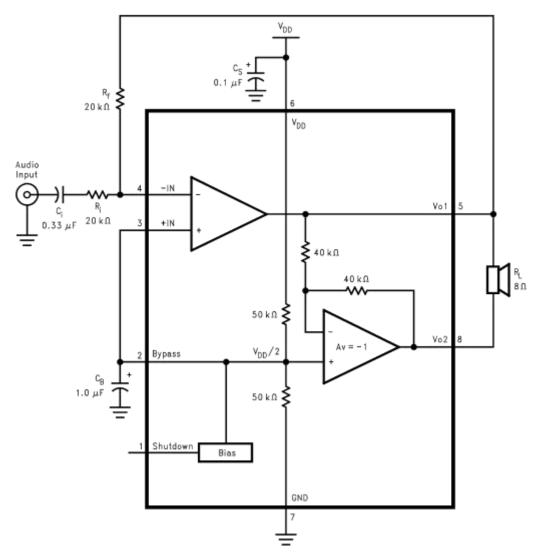


Figure 2. Typical Audio Amplifier Application Circuit

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foamduring storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

Supply Voltage	6.0V					
Storage Temperature	-65°C to +150°C					
Input Voltage	$-0.3V$ to $V_{DD} + 0.3V$					
Power Dissipation (3)	Internally limited					
ESD Susceptibility (4)	3000V					
ESD Susceptibility (5)	250V					
Junction Temperature	Junction Temperature					
	0000	Vapor Phase (60 sec.)	215°C			
Soldering Information	SOP Package	Infrared (15 sec.)	220°C			

- 1. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
- 2. Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
- 3. The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4861, $T_{JMAX} = 150$ °C, and the typical junction-to-ambient thermal resistance, when board mounted, is 140°C/W.
- 4. Human body model, 100pF discharged through a $1.5k\Omega$ resistor.
- 5. Machine Model, 220pF–240pF discharged through all pins.

Operating Ratings

Temperature Range	$T_{MIN} \le T_A \le T_{MAX}$	-40°C ≤ T _A ≤ +85°C
Supply Voltage		$2.0V \le V_{DD} \le 5.5V$
Thermal Resistance	θ _{JA} (typ)—M08A	35°C/W
	θ _{JA} (typ)—M08A	140°C/W
	θ _{JA} (typ)—N08E	37°C/W
	θ _{JA} (typ)—N08E	107°C/W

Electrical Characteristics

The following specifications apply for V_{DD} = 5V, unless otherwise specified. Limits apply for T_A = 25°C.

Cumbal	Downwater	Conditions	LM4	Heite (Limite)	
Symbol	Parameter	Conditions	Typical ⁽³⁾	Limit ⁽⁴⁾	Units (Limits)
V _{DD}	Cumply Valtage			2.0	V (min)
VDD Supply Voltage	Supply voltage			5.5	V (max)
I _{DD}	Quiescent Power Supply Current	$V_{IN} = 0V, I_O = 0A^{(5)}$	6.5	10.0	mA (max)
ISD	Shutdown Current	VSHUTDOWN = VDD	0.6	10.0	μA (max)
Vos	Output Offset Voltage	V _{IN} = 0V	5.0	50.0	mV (max)
Po	Output Power	THD = 1% (max); f = 1 kHz	1.1	1.0	W (min)
THD+N	Total Harmonic Distortion + Noise	P ₀ = 1Wrms; 20 Hz ≤ f ≤ 20 kHz	0.72		%
PSRR	Power Supply Rejection Ratio	$V_{DD} = 4.9V \text{ to } 5.1V$	65		dB

- 1. All voltages are measured with respect to the ground pin, unless otherwise specified.
- 2. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
- 3. Typicals are measured at 25°C and represent the parametric norm.
- 4. Limits are specified to TI's AOQL (Average Outgoing Quality Level).
- 5. The quiescent power supply current depends on the offset voltage when a practical load is connected to the amplifier.

High Gain Application Circuit

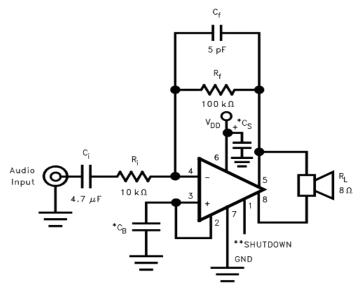
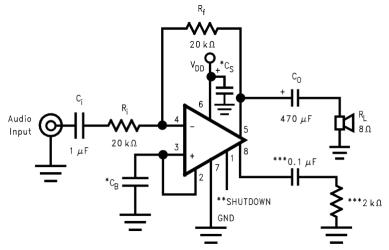



Figure 3. Audio Amplifier with A_{VD}=20

Single Ended Application Circuit

^{*}CS and CB size depend on specific application requirements and constraints. Typical values of CS and CB are 0.1 μF.

Figure 4. Single-Ended Amplifier with A_V=-1

External Components Description

(Figure 2 and Figure 3)

Components	Functional Description
1 D	Inverting input resistance which sets the closed-loop gain in conjunction with R _f . This resistor also
1. R _i	forms a high passfilter with C_i at f_C = 1 / (2 π R _i C _i).
2. C _i	Input coupling capacitor which blocks DC voltage at the amplifier's input terminals. Also creates a high
2. Ci	pass filter with R_i at $f_C = 1 / (2\pi R_i C_i)$.
3. R _f	Feedback resistance which sets closed-loop gain in conjunction with R _i .
4. Cs	Supply bypass capacitor which provides power supply filtering. Refer to for proper placement and
4. US	selection of supplybypass capacitor.
5. C _B	Bypass pin capacitor which provides half supply filtering. Refer to Application Information for proper
5. C _B	placement andselection of bypass capacitor.
(4)	C_f in conjunction with R_f creates a low-pass filter which bandwidth limits the amplifier and prevents
6. C _f ⁽¹⁾	possible highfrequency oscillation bursts. $f_C = 1 / (2\pi R_f C_f)$

⁽¹⁾ Optional component dependent upon specific design requirements. Refer to Application Information for more information.

^{**}Pin 1 should be connected to VDD to disable the amplifier or to GND to enable the amplifier. This pin should not be left floating.

^{***}These components create a "dummy" load for pin 8 for stability purposes.

Typical Performance Characteristics

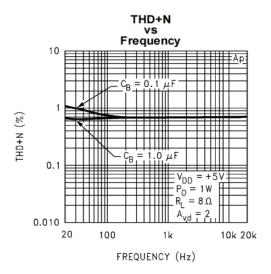


Figure 5.

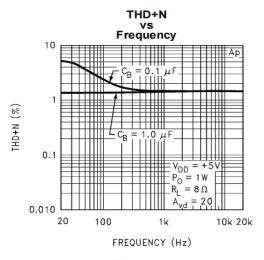


Figure 7.

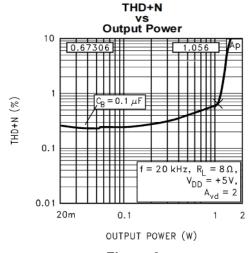


Figure 9.

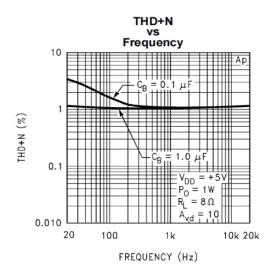


Figure 6.

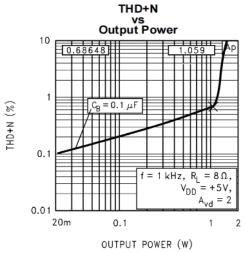


Figure 8.

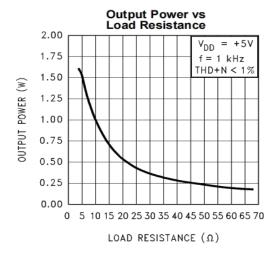


Figure 10.

Typical Performance Characteristics (continued)

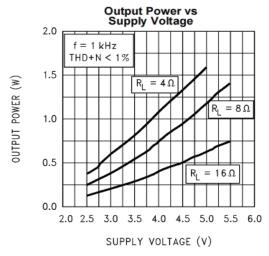


Figure 11.

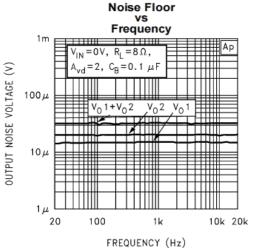


Figure 13.

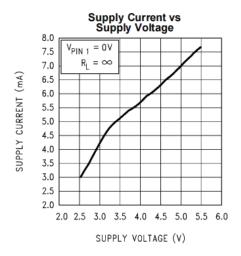


Figure 15.

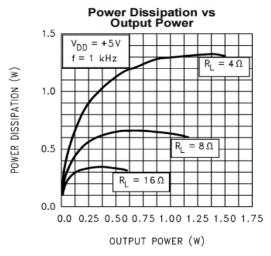


Figure 12.

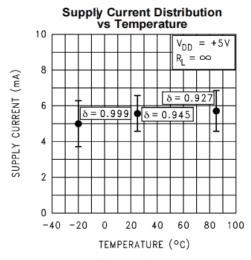


Figure 14.

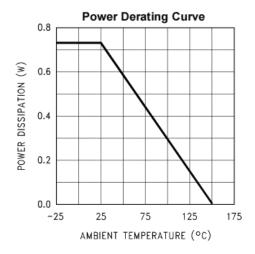


Figure 16.

Typical Performance Characteristics (continued)

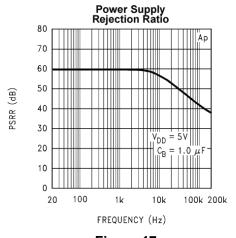


Figure 17.

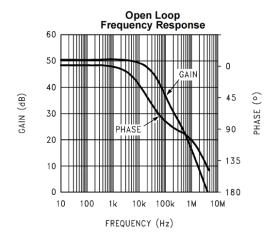


Figure 18.

APPLICATION INFORMATION

BRIDGE CONFIGURATION EXPLANATION

As shown in Figure 2 , the LM4861 has two operational amplifiers internally, allowing for a few different amplifier configurations. The first amplifier's gain is externally configurable, while the second amplifier is internally fixed in a unity-gain, inverting configuration. The closed-loop gain of the first amplifier is set by selecting the ratio of Rf to Ri while the second amplifier's gain is fixed by the two internal $40k\Omega$ resistors. Figure 2 shows that the output of amplifier one serves as the input to amplifier two which results in both amplifiers producing signals identical in magnitude, but out of phase 180° . Consequently, the differential gain for the IC is:

$$Avd = 2 * (Rf/Ri)$$
 (1)

By driving the load differentially through outputs VO1 and VO2, an amplifier configuration commonly referred to as "bridged mode" is established. Bridged mode operation is different from the classical single-ended amplifier configuration where one side of its load is connected to ground.

A bridge amplifier design has a few distinct advantages over the single-ended configuration, as it provides differential drive to the load, thus doubling output swing for a specified supply voltage. Consequently, four times the output power is possible as compared to a single-ended amplifier under the same conditions. This increase in attainable output power assumes that the amplifier is not current limited or clipped. In order to choose an amplifier's closed-loop gain without causing excessive clipping which will damage high frequency transducers used in loudspeaker systems, please refer to AUDIO POWER AMPLIFIER DESIGN.

A bridge configuration, such as the one used in Boomer Audio Power Amplifiers, also creates a second advantage over single-ended amplifiers. Since the differential outputs, VO1 and VO2, are biased at half-supply, no net DC voltage exists across the load. This eliminates the need for an output coupling capacitor which is required in a single supply, single-ended amplifier configuration. Without an output coupling capacitor in a single supply, single-ended amplifier, the half-supply bias across the load would result in both increased internal IC power dissipation and also permanent loudspeaker damage. An output coupling capacitor forms a high pass filter with the load requiring that a large value such as $470\mu\text{F}$ be used with an 8Ω load to preserve low frequency response.

This combination does not produce a flat response down to 20Hz, but does offer a compromise between printed circuit board size and system cost, versus low frequency response.

POWER DISSIPATION

Power dissipation is a major concern when designing a successful amplifier, whether the amplifier is bridged or single-ended. A direct consequence of the increased power delivered to the load by a bridge amplifier is an increase in internal power dissipation. Equation 3 states the maximum power dissipation point for a bridge amplifier operating at a given supply voltage and driving a specified output load.

$$P_{DMAX} = 4*(V_{DD})_2 / (2\pi_2 R_L)$$
 (2)

Since the LM4861 has two operational amplifiers in one package, the maximum internal power dissipation is 4 times that of a single-ended amplifier. Even with this substantial increase in power dissipation, the LM4861 does not require heatsinking. From Equation 3, assuming a 5V power supply and an 8Ω load, the maximum power dissipation point is 625mW. The maximum power dissipation point obtained from Equation 3 must not be greater than the power dissipation that results from Equation 3:

$$P_{DMAX} = (T_{JMAX} - T_{A}) / \theta_{JA}$$
 (3)

For the LM4861 surface mount package, θ JA = 140°C/W and TJMAX = 150°C. Depending on the ambient temperature, TA, of the system surroundings, Equation 3 can be used to find the maximum internal power dissipation supported by the IC packaging. If the result of Equation 3 is greater than that of Equation 3, then either the supply voltage must be decreased or the load impedance increased. For the typical application of a 5V power supply, with an 8 Ω load, the maximum ambient temperature possible without violating the maximum junction temperature is approximately 62.5°C provided that device operation is around the maximum power dissipation point. Power dissipation is a function of output power and thus, if typical operation is not around the maximum power dissipation point, the ambient temperature can be increased. Refer to the Typical Performance Characteristics curves for power dissipation information for lower output powers.

POWER SUPPLY BYPASSING

As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. The capacitor location on both the bypass and power supply pins should be as close to the device as possible. As displayed in the Typical Performance Characteristics, the effect of a larger half supply bypass capacitor is improved low frequency THD+N due to increased half-supply stability. Typical applications employ a 5V regulator with 10µF and a 0.1µF bypass capacitors which aid in supply stability, but do not eliminate the need for bypassing the supply nodes of the LM4861. The selection of bypass capacitors, especially CB, is thus dependant upon desired low frequency THD+N, system cost, and size constraints.

SHUTDOWN FUNCTION

In order to reduce power consumption while not in use, the LM4861 contains a shutdown pin to externally turn off the amplifier's bias circuitry. The shutdown feature turns the amplifier off when a logic high is placed on the shutdown pin. Upon going into shutdown, the output is immediately disconnected from the speaker. A typical quiescent current of $0.6\mu A$ results when the supply voltage is applied to the shutdown pin. In many applications, a microcontroller or microprocessor output is used to control the shutdown circuitry which provides a quick, smooth transition into shutdown. Another solution is to use a single-pole, single-throw switch that when closed, is connected to ground and enables the amplifier. If the switch is open, then a soft pull-up resistor of $47k\Omega$ will

disable the LM4861. There are no soft pull-down resistors inside the LM4861, so a definite shutdown pin voltage must be applied externally, or the internal logic gate will be left floating which could disable the amplifier unexpectedly.

HIGHER GAIN AUDIO AMPLIFIER

The LM4861 is unity-gain stable and requires no external components besides gain-setting resistors, an input coupling capacitor, and proper supply bypassing in the typical application. However, if a closed-loop differential gain of greater than 10 is required, a feedback capacitor may be needed, as shown in Figure 3, to bandwidth limit the amplifier. This feedback capacitor creates a low pass filter that eliminates possible high frequency oscillations. Care should be taken when calculating the -3dB frequency in that an incorrect combination of Rf and Cf will cause rolloff before 20kHz. A typical combination of feedback resistor and capacitor that will not produce audio band high frequency rolloff is Rf = $100k\Omega$ and Cf = 5pF. These components result in a -3dB point of approximately 320kHz. Once the differential gain of the amplifier has been calculated, a choice of Rf will result, and Cf can then be calculated from the formula stated in External Components Description .

VOICE-BAND AUDIO AMPLIFIER

Many applications, such as telephony, only require a voice-band frequency response. Such an application usually requires a flat frequency response from 300Hz to 3.5kHz. By adjusting the component values of Figure 3, this common application requirement can be implemented. The combination of Ri and Ci form a highpass filter while Rf and Cf form a lowpass filter. Using the typical voice-band frequency range, with a passband differential gain of approximately 100, the following values of Ri, Ci, Rf, and Cf follow from the equations stated in External Components Description .

Ri =
$$10k\Omega$$
, Rf = $510k$, Ci = 0.22μ F, and Cf = $15p$ F (4)

Five times away from a -3dB point is 0.17dB down from the flatband response. With this selection of components, the resulting -3dB points, fL and fH, are 72Hz and 20kHz, respectively, resulting in a flatband frequency response of better than $\pm 0.25dB$ with a rolloff of 6dB/octave outside of the passband. If a steeper rolloff is required, other common bandpass filtering techniques can be used to achieve higher order filters.

SINGLE-ENDED AUDIO AMPLIFIER

Although the typical application for the LM4861 is a bridged monoaural amp, it can also be used to drive a load singlendedly in applications, such as PC cards, which require that one side of the load is tied to ground. Figure 4 shows a common single-ended application, where VO1 is used to drive the speaker. This output is coupled through a 470 μ F capacitor, which blocks the half-supply DC bias that exists in all single-supply amplifier configurations. This capacitor, designated CO in Figure 4, in conjunction with RL, forms a highpass filter. The -3dB point of this high pass filter is $1/(2\pi RLCO)$, so care should be taken to make sure that the product of RL and CO is large enough to pass low frequencies to the load. When driving an 8Ω load, and if a full audio spectrum reproduction is required, CO should be at least 470μ F. VO2, the output that is not used, is connected through a $0.1~\mu$ F capacitor to a $2k\Omega$ load to prevent instability.

While such an instability will not affect the waveform of VO1, it is good design practice to load the second output.

AUDIO POWER AMPLIFIER DESIGN

Design a 1W / 8Ω Audio Amplifier

Given:	
Power Output	1 Wrms
Load Impedance	8Ω
Input Level	1 Vrms
Input Impedance	20 kΩ
Bandwidth	100 Hz-20 kHz ± 0.25 dB

A designer must first determine the needed supply rail to obtain the specified output power. By extrapolating from Figure 11 in Typical Performance Characteristics, the supply rail can be easily found. A second way to determine the minimum supply rail is to calculate the required Vopeak using Equation 5 and add the dropout voltage. Using this method, the minimum supply voltage would be (Vopeak + VOD, where VOD is typically 0.6V.

$$V_{\text{opeak}} = \sqrt{(2R_{\text{L}}P_{\text{O}})}$$
 (5)

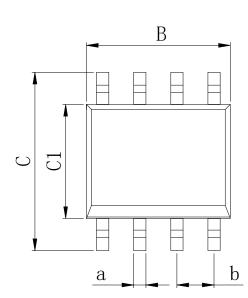
For 1W of output power into an 8Ω load, the required Vopeak is 4.0V. A minumum supply rail of 4.6V results from adding Vopeak and Vod. But 4.6V is not a standard voltage that exists in many applications and for this reason, a supply rail of 5V is designated. Extra supply voltage creates dynamic headroom that allows the LM4861 to reproduce peaks in excess of 1Wwithout clipping the signal. At this time, the designer must make sure that the power supply choice along with the output impedance does not violate the conditions explained in the POWER DISSIPATION.

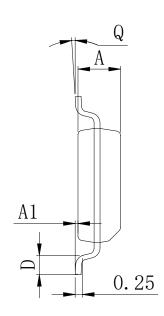
Once the power dissipation equations have been addressed, the required differential gain can be determined from Equation 6.

$$A_{VD} \ge \sqrt{P_0 P_L)/(V_{IN})} = V_{orms}/V_{inrms}$$
 (6)
$$Rf/Ri = A_{VD}/2$$
 (7)

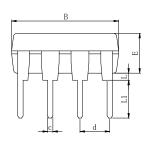
From Equation 6, the minimum Avd is 2.83: Avd = 3

Since the desired input impedance was $20k\Omega$, and with a Avd of 3, a ratio of 1:1.5 of Rf to Ri results in an allocation of Ri = $20k\Omega$, Rf = $30k\Omega$. The final design step is to address the bandwidth requirements which must be stated as a pair of -3dB frequency points. Five times away from a -3db point is 0.17dB down from passband response which is better than the required $\pm 0.25dB$ specified. This fact results in a low and high frequency pole of 20Hz and 100kHz respectively. As stated in External Components Description , Ri in conjunction with Ci create a highpass filter.

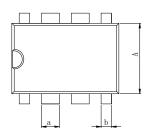

Ci
$$\geq$$
 1 / $(2\pi^*20k\Omega^*20Hz) = 0.397\mu\text{F}$; use $0.39\mu\text{F}$. (8)


The high frequency pole is determined by the product of the desired high frequency pole, fH, and the differential gain, Avd. With a Avd = 2 and fH = 100kHz, the resulting GBWP = 100kHz which is much smaller than the LM4861 GBWP of 4MHz. This figure displays that if a designer has a need to design an amplifier with a higher differential gain, the LM4861 can still be used without running into bandwidth problems.

Physical Dimensions

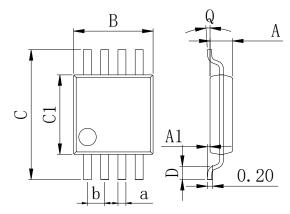

SOP8





Dimensions In Millimeters(SOP8)										
Symbol:	Α	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC	
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.21 000	

DIP8



Dimensions In Millimeters(DIP8)											
Symbol:	Α	В	D	D1	Е	L	L1	а	b	С	d
Min:	6.10	9.00	8.40	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	9.50	9.00	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 BSC

MSOP8

Dimensions In Millimeters(MSOP8)											
Symbol:	Α	A1	В	С	C1	D	Q	а	b		
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65 BSC		
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	0.00 BSC		

IMPORTANT STATEMENT:

Hanschip Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Hanschip Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Hanschip Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: select the appropriate Hanschip Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Hanschip Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Hanschip Semiconductor will not bear the consequences caused by the application of products in these fields.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Hanschip Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Hanschip Semiconductor. Not all parameters of each device need to be tested.

The documentation of Hanschip Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Hanschip Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Hanschip Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Hanschip Semiconductor accepts no liability for any loss or damage caused by infringement.