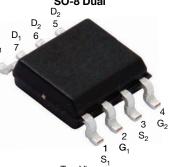


STN4828-VB Datasheet

Dual N-Channel 60 V (D-S) 175 °C MOSFET


PRODUCT SUMMARY				
V _{DS} (V)	60			
$R_{DS(on)} (\Omega)$ at $V_{GS} = 10 V$	0.028			
$R_{DS(on)} (\Omega)$ at $V_{GS} = 4.5 V$	0.030			
I _D (A) per leg	7			
Configuration	Dual			

$\underset{\mathsf{D}_2}{\textbf{SO-8 Dual}}$ D_2 5 D_1 6 D_1 8 G_2 S_2 G₁ S_1 Top View

FEATURES

- TrenchFET[®] power MOSFET
- 100 % R_g and UIS tested

D G1 G2 C S₁ S_2

COMPLIANT HALOGEN

N-Channel MOSFET N-Channel	nel MOSFET
----------------------------	------------

ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unless otherwise noted)					
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage		V _{DS}	60	V	
Gate-Source Voltage		V _{GS}	± 20	V	
Continuous Drain Current	T _C = 25 °C	1	7		
	T _C = 125 °C	- I _D	4		
Continuous Source Current (Diode Conduction) ^a		I _S	3.6	А	
Pulsed Drain Current ^b		I _{DM}	28		
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	18		
Single Pulse Avalanche Energy		E _{AS}	16.2	mJ	
Maximum Power Dissipation ^b	T _C = 25 °C	D	4	W	
	T _C = 125 °C	P _D	1.3	vv	
Operating Junction and Storage Temperature F	Range	T _J , T _{stg}	-55 to +175	°C	

THERMAL RESISTANCE RATINGS					
PARAMETER		SYMBOL	LIMIT	UNIT	
Junction-to-Ambient	PCB Mount ^c	R _{thJA}	110	°C/W	
Junction-to-Foot (Drain)		R _{thJF}	34	0/10	

Notes

a. Package limited.

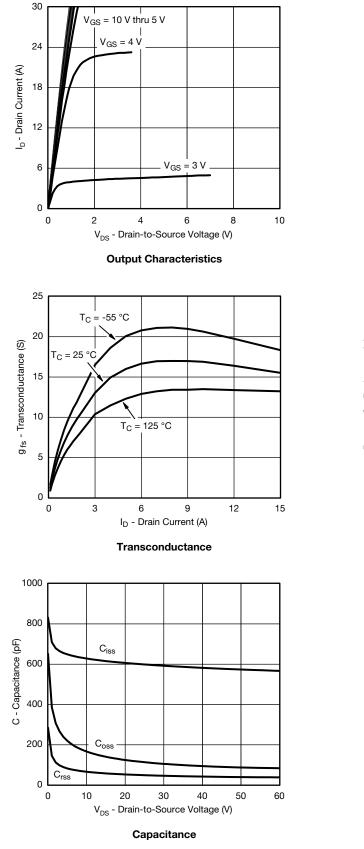
b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

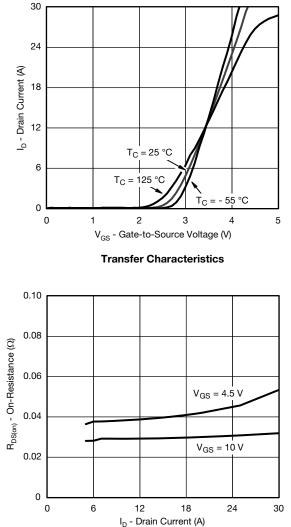
c. When mounted on 1" square PCB (FR4 material).

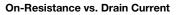
STN4828

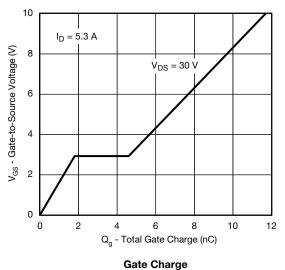
Static Static $V_{GS} = 0 V, I_p = 250 \mu A$ 60 - - V_{GS} Gate-Source Threshold Voltage $V_{GS}(h)$ $V_{DS} = V_{GS}, I_p = 250 \mu A$ 1.5 2.0 2.5 V_{GS} Gate-Source Leakage I_{GSS} $V_{DS} = 0 V, V_{GS} = \pm 20 V$ - - ± 100 nA Zero Gate Voltage Drain Current I_{DSS} $V_{GS} = 0 V$ $V_{DS} = 60 V, T_J = 125 °C$ - - 1 μA On-State Drain Current ^a $I_{D(an)}$ $V_{GS} = 0 V$ $V_{DS} = 60 V, T_J = 125 °C$ - - 150 Drain-Source On-State Resistance ^a $I_{D(an)}$ $V_{GS} = 10 V$ $I_D = 4.5 A, T_J = 125 °C$ - 0.028 - - 40 Drain-Source On-State Resistance ^a $V_{GS} = 10 V$ $I_D = 4.5 A, T_J = 125 °C$ - 0.081 - - 40 Drain-Source On-State Resistance ^a $V_{GS} = 10 V$ $I_D = 4.5 A, T_J = 175 °C$ - 0.081 - - 40 - 40 - 50 60 - -	SPECIFICATIONS ($T_c = 25 \text{ °C}$, unless otherwise noted)							
$ \begin{array}{ c c c c } \hline Drain-Source Breakdown Voltage & V_{DS} & V_{GS} = 0 V, V_{GS} = 250 \ \mu A & 60 & - & - & \\ \hline Gate-Source Leakage & I_{GSS} & V_{DS} = 0 V, V_{GS} = 250 \ \mu A & 1.5 & 2.0 & 2.5 & \\ \hline Gate-Source Leakage & I_{GSS} & V_{DS} = 0 V, V_{GS} = 20 V & - & - & 4 \ 100 & nA & \\ \hline Product Particle Part Part Part Part Part Part Part Part$	PARAMETER	SYMBOL			MIN.	TYP.	MAX.	UNIT
$ \begin{array}{c c c c c c c } \hline Gate-Source Threshold Voltage $V_{GS(th)}$ & V_{DS} = V_{GS}, b = 250 \ \mu & 1.5 & 2.0 & 2.5 \\ \hline Gate-Source Leakage & l_{GSS} & V_{DS} = 0 \ V, V_{GS} = \pm 20 \ V & - & - & \pm 100 & nA \\ \hline Gate-Source Leakage & l_{GSS} & V_{DS} = 0 \ V, V_{GS} = 60 \ V & - & - & 1 & V_{GS} & V_{DS} & 0 \ V_{DS} = 60 \ V & - & - & 10 & V_{DS} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	Static	-						
$ \begin{array}{c c c c c c c } \hline \mbox{Gate-Source Inveshold Voltage} & V_{GS(th)} & V_{DS} = V_{GS}, \mbox{I}_{D} = 250 \ \mu A & 1.5 & 2.0 & 2.5 & 1 & 1.5 & 1.5 & 2.0 & 2.5 & 1.5$	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	$V_{GS} = 0 V, I_D = 250 \mu A$		-	-	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μΑ	1.5	2.0	2.5	V
$ \begin{array}{ c c c c c } \mbox{Zero Gate Voltage Drain Current} & I_{DSS} & V_{GS} = 0 V & V_{DS} = 60 V, T_J = 125 \ ^{\circ}{\rm C} & - & - & 50 \\ \hline V_{GS} = 0 V & V_{DS} = 60 V, T_J = 175 \ ^{\circ}{\rm C} & - & - & 150 \\ \hline V_{GS} = 0 V & V_{DS} = 50 V, T_J = 175 \ ^{\circ}{\rm C} & - & - & 150 \\ \hline V_{GS} = 10 V & V_{DS} \geq 5 V & 20 & - & - & A \\ \hline V_{GS} = 10 V & I_D = 4.5 \ A, T_J = 125 \ ^{\circ}{\rm C} & - & 0.066 & - \\ \hline V_{GS} = 10 V & I_D = 4.5 \ A, T_J = 125 \ ^{\circ}{\rm C} & - & 0.088 & - \\ \hline V_{GS} = 10 V & I_D = 4.5 \ A, T_J = 125 \ ^{\circ}{\rm C} & - & 0.088 & - \\ \hline V_{GS} = 10 V & I_D = 4.5 \ A, T_J = 175 \ ^{\circ}{\rm C} & - & 0.088 & - \\ \hline V_{GS} = 10 V & I_D = 4.5 \ A, T_J = 175 \ ^{\circ}{\rm C} & - & 0.081 & - \\ \hline V_{GS} = 4.5 V & I_D = 4 \ A & 0.030 & - \\ \hline V_{GS} = 4.5 V & I_D = 4 \ A & 0.030 & - \\ \hline V_{GS} = 4.5 V & I_D = 4 \ A & 0.030 & - \\ \hline V_{GS} = 15 \ V, I_D = 4.5 \ A & - & 15 & - & S \\ \hline Dynamic \ b & & & & & & & & \\ \hline Dynamic \ b & & & & & & & & & & \\ \hline Dut Capacitance & C_{ISS} & V_{GS} = 0 \ V \\ Output Capacitance & C_{ISS} & V_{GS} = 0 \ V_{GS} = 0 \ V \\ V_{DS} = 25 \ V, f = 1 \ MHz & - & 110 & 140 \\ P \ Reverse Transfer Capacitance & C_{rSS} & V_{GS} = 10 \ V \\ \hline Dut Capacitance \ Capacita$	Gate-Source Leakage	I _{GSS}	V _{DS} =	0 V, $V_{GS} = \pm 20 V$	-	-	± 100	nA
$ \begin{array}{ c c c c c } \hline V_{GS} = 0 & V_{DS} = 60 & V, \ T_J = 175 \ ^{\circ}{\rm C} & - & - & 150 \\ \hline V_{GS} = 10 & V_{DS} \geq 5 & 20 & - & - & A \\ \hline V_{GS} = 10 & V_{DS} \geq 5 & 20 & - & - & A \\ \hline V_{GS} = 10 & V_{DS} \geq 5 & 20 & - & - & 0.028 & - & \\ \hline V_{GS} = 10 & V_{DS} = 4.5 & A, \ T_J = 125 \ ^{\circ}{\rm C} & - & 0.066 & - & \\ \hline V_{GS} = 10 & V_{DS} = 4.5 & A, \ T_J = 125 \ ^{\circ}{\rm C} & - & 0.081 & - & \\ \hline V_{GS} = 10 & V_{DS} = 4.5 & V_{DS} = 15 \ ^{\circ}{\rm C} & - & 0.081 & - & \\ \hline V_{GS} = 10 & V_{DS} = 4.5 & V_{DS} = 15 \ ^{\circ}{\rm C} & - & 0.081 & - & \\ \hline V_{GS} = 4.5 & V_{DS} = 15 \ ^{\circ}{\rm C} & - & 0.030 & - & \\ \hline V_{GS} = 4.5 & V_{DS} = 15 \ ^{\circ}{\rm C} & - & 0.030 & - & \\ \hline V_{GS} = 4.5 & V_{DS} = 15 \ ^{\circ}{\rm C} & - & 0.030 & - & \\ \hline V_{DS} = 25 \ ^{\circ}{\rm C} & - & 15 & - & \\ \hline Dynamic ^{b} & & & & \\ \hline Dutput \ Capacitance & C_{Iss} & & & \\ \hline Dutput \ Capacitance & C_{rss} & & & \\ \hline Output \ Capacitance & C_{rss} & & \\ \hline Output \ Capacitance & C_{rss} & & \\ \hline Cutal \ Gate \ Charge \ ^{\circ} & Q_{g} & & \\ \hline Cutal \ Gate \ Charge \ ^{\circ} & Q_{g} & & \\ \hline Cate \ Charge \ ^{\circ} & Q_{g} & & \\ \hline Cate \ Charge \ ^{\circ} & Q_{g} & & \\ \hline Cate \ Charge \ ^{\circ} & Q_{g} & & \\ \hline Turn \ On \ Delay \ Time \ ^{\circ} & t_{d(off)} & \\ \hline Turn \ Of \ Delay \ Time \ ^{\circ} & t_{d(off)} & \\ \hline Turn \ Of \ Delay \ Time \ ^{\circ} & t_{d(off)} & \\ \hline Turn \ Of \ Delay \ Time \ ^{\circ} & t_{d(off)} & \\ \hline Turn \ Of \ Delay \ Time \ ^{\circ} & t_{d(off)} & \\ \hline Turn \ Of \ Delay \ Time \ ^{\circ} & t_{d(off)} & \\ \hline Turn \ Of \ Delay \ Time \ ^{\circ} & t_{d(off)} & \\ \hline Turn \ ^{\circ} \ Delay \ Time \ ^{\circ} \ t_{d(off)} & \\ \hline Turn \ ^{\circ} \ Delay \ Time \ ^{\circ} \ t_{d(off)} & \\ \hline Turn \ ^{\circ} \ Delay \ Time \ ^{\circ} \ Turn \ ^{\circ} \ Cate \ ^{\circ} \ Turn \ ^{\circ} \ Cate \ ^{\circ}$			$V_{GS} = 0 V$	V _{DS} = 60 V	-	-	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	$V_{DS} = 60 \text{ V}, \text{ T}_{J} = 125 ^{\circ}\text{C}$	-	-	50	μA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				V _{DS} = 60 V, T _J = 175 °C	-	-	150	
$ \begin{array}{ c c c c c c } \hline \mbox{Drain-Source On-State Resistance a} & $P_{OS(on)}$ & $V_{GS} = 10 V & $I_D = 4.5 $A, $T_J = 125 $^{\circ}$C$ & $-$ & 0.066 & $-$ \\ \hline V_{GS} = 10 V & $I_D = 4.5 $A, $T_J = 175 $^{\circ}$C$ & $-$ & 0.081 & $-$ \\ \hline V_{GS} = 10 V & $I_D = 4.5 $A, $T_J = 175 $^{\circ}$C$ & $-$ & 0.081 & $-$ \\ \hline V_{GS} = 10 V & $I_D = 4.5 A & $T_J = 175 $^{\circ}$C$ & $-$ & 0.081 & $-$ \\ \hline V_{GS} = 10 V & $I_D = 4.5 A & $T_J = 175 $^{\circ}$C$ & $-$ & 0.081 & $-$ \\ \hline V_{GS} = 10 V & $I_D = 4.5 A & $-$ & 15 & $-$ & S \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	On-State Drain Current ^a	I _{D(on)}		$V_{DS} \ge 5 V$	20	-	-	A
$ \begin{array}{ c c c c c c c c c } \hline Page & Pa$				5			-	
$ \begin{array}{ c c c c c c c } \hline V_{GS} = 4.5 \ V & l_D = 4 \ Alpha & 0.030 & - \\ \hline Forward Transconductance ^f & g_{fs} & V_{DS} = 15 \ V, \ l_D = 4.5 \ A & - & 15 & - & S \\ \hline Dynamic ^b & & & & & & & & & & & & & & & & & & $	Drain-Source On-State Resistance ^a	R _{DS(on)}					-	Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		()			-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		9 _{fs}	V _{DS}	= 15 V, I _D = 4.5 A	-	15	-	S
$ \begin{array}{ c c c c c c c } \hline Output Capacitance & C_{oss} & V_{GS} = 0 \ V & V_{DS} = 25 \ V, \ f = 1 \ MHz & - & 110 & 140 & PF & 101 & 101 & 140 & PF & 101 & 101 & 100 $	-	Г			[T	[T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance	C _{iss}	_	V _{GS} = 0 V V _{DS} = 25 V, f = 1 MHz	-	600	750	pF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}	$V_{GS} = 0 V$		-	110	140	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}			-	50	62	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Gate Charge ^c	Qg			-	11.7	18	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge ^c	Q _{gs}	$V_{GS} = 10 \text{ V}$	$V_{DS} = 30 \text{ V}, \text{ I}_{D} = 5.3 \text{ A}$	-	1.8	2.7	nC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge ^c	Q _{gd}]		-	2.8	4.2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Resistance	Rg		f = 1 MHz		-	6	Ω
Turn-Off Delay Time ° $t_{d(off)}$ $I_D = 30.0$, $H_L = 0.0.22$ $ 22.4$ 33.5 Fall Time ° t_f $ 2.1$ 3.2 Source-Drain Diode Ratings and Characteristics ^b	Turn-On Delay Time ^c	t _{d(on)}		V _{DD} = 30 V. Βι = 6.8 Ω		7	11	
Turn-Off Delay Time ° $t_{d(off)}$ $I_D \cong 4.4 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$ -22.433.5Fall Time ° t_f -2.13.2Source-Drain Diode Ratings and Characteristics ^b	Rise Time ^c	t _r	V _{DD} =			3.3	5	- ns
Source-Drain Diode Ratings and Characteristics ^b	Turn-Off Delay Time ^c	t _{d(off)}			-	22.4	33.5	
	Fall Time ^c	t _f			-	2.1	3.2	
Pulsed Current ^a I _{SM} 28 A	Source-Drain Diode Ratings and Characteristics ^b							
	Pulsed Current ^a	I _{SM}			-	-	28	Α
Forward Voltage V _{SD} I _F = 2 A, V _{GS} = 0 V - 0.75 1.1 V	Forward Voltage	V _{SD}	I _F =	$I_{F} = 2 A, V_{GS} = 0 V$		0.75	1.1	V

Notes

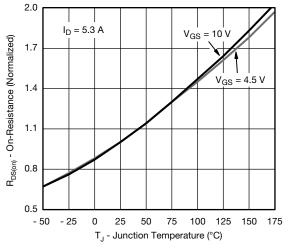

a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.
b. Guaranteed by design, not subject to production testing.
c. Independent of operating temperature.

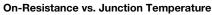

Bsemi

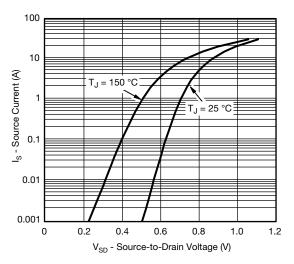

www.VBsemi.com

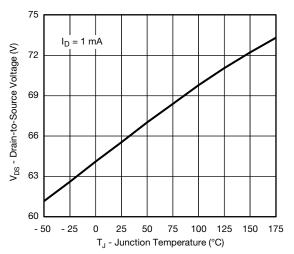


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

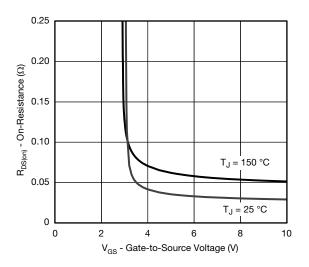


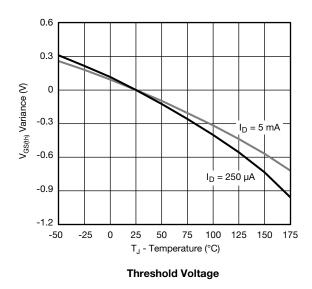




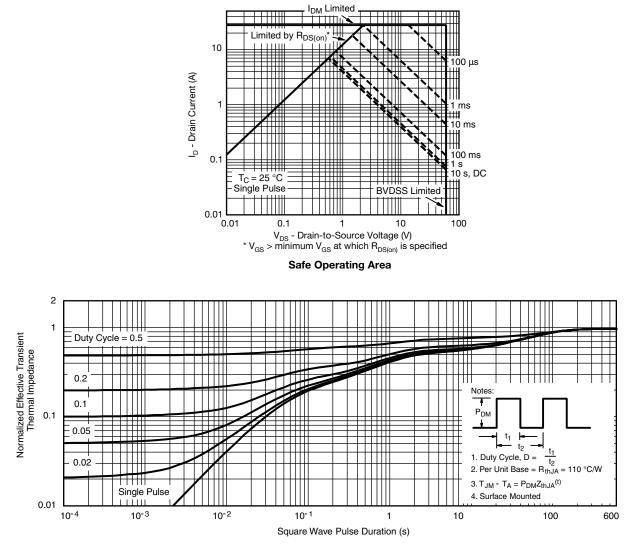


TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)

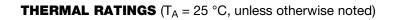


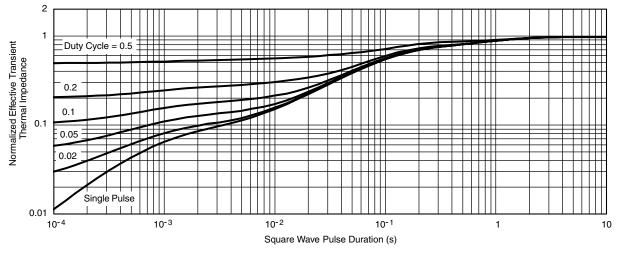

Source Drain Diode Forward Voltage

Drain Source Breakdown vs. Junction Temperature

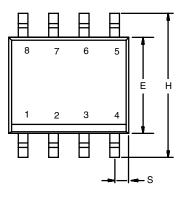

On-Resistance vs. Gate-to-Source Voltage

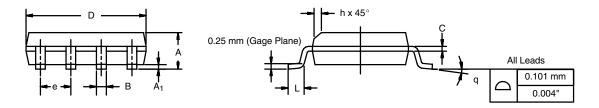
服务热线:400-655-8788




THERMAL RATINGS ($T_A = 25 \text{ °C}$, unless otherwise noted)

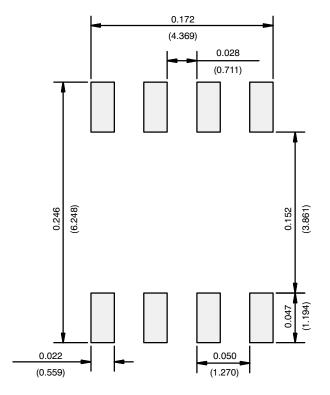
Normalized Thermal Transient Impedance, Junction-to-Ambient





Normalized Thermal Transient Impedance, Junction-to-Foot

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012



	MILLIM	IETERS	INCHES		
DIM	Min	Мах	Min	Max	
A	1.35	1.75	0.053	0.069	
A ₁	0.10	0.20	0.004	0.008	
В	0.35	0.51	0.014	0.020	
С	0.19	0.25	0.0075	0.010	
D	4.80	5.00	0.189	0.196	
E	3.80	4.00	0.150	0.157	
е	1.27	BSC	0.050 BSC		
Н	5.80	6.20	0.228	0.244	
h	0.25	0.50	0.010	0.020	
L	0.50	0.93	0.020	0.037	
q	0°	8°	0°	8°	
S	0.44	0.64	0.018	0.026	
ECN: C-06527-Rev. I, 11-Sep-06 DWG: 5498					

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.