

Quad 3-STATE NOR R/S Latches

Description:

The CD4043 is quad cross-couple 3-STATE CMOS NOR latches, has a separate Q output and individual SET and RESET inputs. There is a common 3-STATE ENABLE input for all four latches. A logic "1" on the ENABLE input connects the latch states to the Q outputs. A logic "0" on the ENABLE input discon-nects the latch states from the Q outputs resulting in an open circuit condition on the Q output. The 3-STATE fea-ture allows common bussing of the outputs.

Features:

Wide supply voltage range: 3V to 15V

Low power: 100 nW (typ.)

High noise immunity: 0.45 V_{DD} (typ.)

Separate SET and RESET inputs for each latch

NOR and NAND configuration

3-STATE output with common output enable

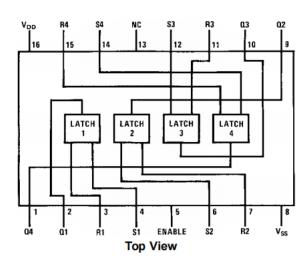
Application:

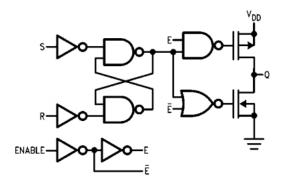
- Multiple bus storage
- Strobed register
- Four bits of independent storage with output enable
- · General digital logic

Absolute Maximum Ratings

Supply Voltage (V_{DD}) -0.5V to +18V Input Voltage (V_{IN}) -0.5V to V_{DD} +0.5V Storage Temperature Range (T_{S}) -65° C to +150 $^{\circ}$ C

Power Dissipation (P_D)


Dual-In-Line 700 mW Small Outline 500 mW


Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

function diagram

Truth Tables

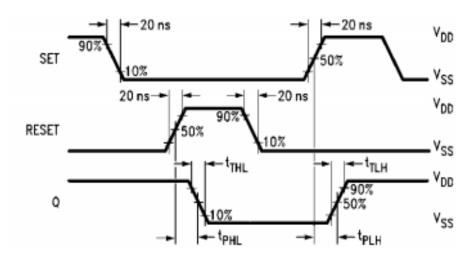
S	R	E	Q
Χ	X	0	OC
0	0	1	NC
1	0	1	1
0	1	1	0
1	1	1	Δ

OC = 3-STATE NC = No change

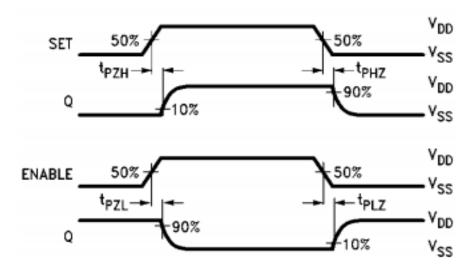
X = Don't care

 $\Delta = Dominated by S = 1 input$

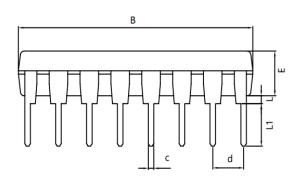
 $\Delta\Delta$ = Dominated by R = 0 input

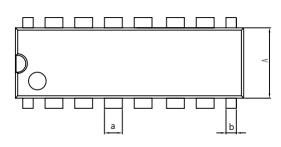


DC Electrical Characteristics


Symbol	Parameter	Conditions	-40	-40°C		+25°C		+85°C		Units
		Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		20		0.01	20		150	μА
	Device Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		40		0.01	40		300	μА
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		80		0.02	80		600	μА
V _{OL}	LOW Level	$ I_{O} \le 1 \mu A$, $V_{IL} = 0V$, $V_{IH} = V_{DD}$								
	Output Voltage	$V_{DD} = 5.0V$		0.05		0	0.05		0.05	V
		V _{DD} = 10V		0.05		0	0.05		0.05	V
		V _{DD} = 15V		0.05		0	0.05		0.05	V
V _{OH}	HIGH Level	$ I_O \le 1 \mu A$, $V_{IL} = 0V$, $V_{IH} = V_{DD}$								
	Output Voltage	$V_{DD} = 5.0V$	4.95		4.95	5.0		4.95		V
		V _{DD} = 10V	9.95		9.95	10		9.95		V
		V _{DD} = 15V	14.95		14.95	15		14.95		V
V _{IL}	LOW Level	I _O ≤ 1 μA								
	Input Voltage	$V_{DD} = 5.0V$, $V_{O} = 0.5V$ or 4.5V		1.5		2.25	1.5		1.5	V
		$V_{DD} = 10V$, $V_{O} = 1.0V$ or $9.0V$		3.0		4.5	3.0		3.0	V
		$V_{DD} = 15V$, $V_{O} = 1.5V$ or $13.5V$		4.0		6.75	4.0		4.0	V
V _{IH}	HIGH Level	I _O ≤ 1 μA								
	Input Voltage	$V_{DD} = 5.0V$, $V_{O} = 0.5V$ or 4.5V	3.5		3.5			3.5		V
		$V_{DD} = 5.0V$, $V_{O} = 1.0V$ or $9.0V$	7.0		7.0			7.0		V
		$V_{DD} = 15V$, $V_{O} = 1.5V$ or $13.5V$	11		11			11		V
I _{OL}	LOW Level	$V_{IL} = 0V, V_{IH} = V_{DD}$								
	Output Current	$V_{DD} = 5.0V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	(Note 3)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.2		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	6.0		2.4		mA
I _{OH}	HIGH Level	$V_{IL} = 0V$, $V_{IH} = V_{DD}$								
	Output Current	$V_{DD} = 5.0V, V_{O} = 4.6V$	-0.52		-0.44	-0.32		-0.36		mA
	(Note 3)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-0.8		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-2.4		-2.4		mA
I _{IN}	Input Current	V _{DD} = 15V, V _{IN} = 0V	-0.3			-0.3			-1.0	μА
		V _{DD} = 15V, V _{IN} = 15V	0.3			0.3			1.0	μА

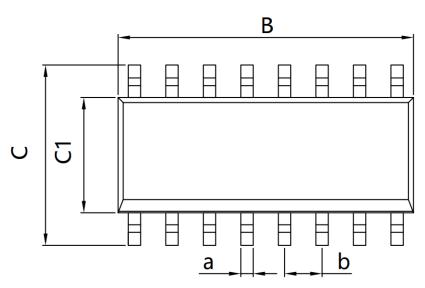
Timing Waveforms

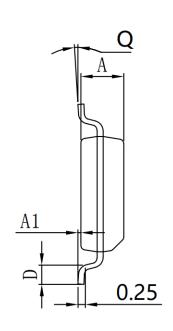

Enable Timing



Pin Assignment:

DIP16





Dimensions In Millimeters							
Symbol :	Min:	Max:	Symbol:	Min:	Max:		
Α	6.100	6.680	L	0.500	0.800		
В	18.940	19.560	а	1.524 TYP			
D	8.200	9.200	b	0.889 TYP			
D1	7.42	7.820	С	0.457 TYP			
E	3.100	3.550	d	2.540 TYP			
L	0.500	0.800					

SOP16

Dimensions In Millimeters							
Symbol :	Min :	Max:	Symbol :	Min :	Max:		
Α	1.225	1.570	D	0.400	0.950		
A1	0.100	0.250	Q	0°	8°		
В	9.800	10.00	а	0.420 TYP			
С	5.800	6.250	b	1.270 TYP			
C1	3.800	4.000					