General Description The operating voltage range of the SN74LVC1G17 single Schmitt-trigger buffer is 1.65 V to 5.5 V The SN74LVC1G17 device contains one buffer and performs the Boolean function Y=A. Because of the Schmitt-Trigger inputs, the device may have different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T-}) signals, to provide hysteresis (ΔV_T) which makes the device tolerant to slow or noisy input signals. This device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. #### **Features** - Schmitt -Trigger inputs provide hysteresis - Supports 5 V Vcc Operation - Inputs Accept Voltages to 5.5 V - **Applications** - AV Receivers - Audio Docks: Portable - Blu-ray Players and Home Theater - MP3 Players/Recorders - Personal Digital Assistants (PDAs) - Max t_{pd} of 5.4 ns at 3.3 V - ±24-mA Output Drive at 3.3 V - Ioff Supports Partial -Power -Down Mode - Power: Telecom/Server AC/DC Supply - Solid State Drives (SSDs): Client and Enterprise - TVs: LCD/Digital and High-Definition (HDTVs) - Tablets: Enterprise - Wireless Headsets, Keyboards, and Mice ## **Pinning and Package** #### **Order information** | Package | Orderable Device | Packing Option | |---------|------------------|----------------| | SOT23-5 | SN74LVC1G17DBVRW | 3000/盘 | | SC70-5 | SN74LVC1G17DCKRW | 3000/盛 | ### **Functional Block Diagram** ### **Pin Functions** | Pi | n | Type | Description | |------|----------------|------|------------------------| | Name | SOT23-5/SC70-5 | туре | Description | | NC | 1 | _ | No internal connection | | Α | 2 | I | Input | | GND | 3 | _ | Ground | | Y | 4 | 0 | Output | | VCC | 5 | _ | Positive Supply | ## **Absolute Maximum Ratings** | | Parameter | Min | Max. | Unit | | |------------------|---|----------------|------|----------------------|----| | Vcc | Supply volt | age range | -0.5 | 6.5 | V | | VI | Input volta | ige range | -0.5 | 6.5 | ٧ | | Vo | Vo Voltage range applied to any output in the high-impedance or power-off state | | | 6.5 | V | | Vo | Voltage range applied to any output in the high or low state | | | V _{CC} +0.5 | V | | Iĸ | Input clamp current | V<0 | | -50 | mA | | Іок | Output clamp current | Vo<0 | | -50 | mA | | lo | Continuous o | utput current | | ±50 | mA | | | Continuous current throu | igh Vcc or GND | | ±100 | mA | | TJ | T _J Junction temperature under bias | | | 150 | °C | | T _{stg} | Storage temp | erature range | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## **Recommended Operating Conditions** Over operating free-air temperature range (unless otherwise noted) | Symbol | Parame | Min | Max | Unit | | |--------|---------------------------|------------------------|------|------|------------| | Vcc | Supply vo | oltage | 1.65 | 5.5 | V | | Vı | Input vol | Itage | 0 | 5.5 | V | | Vo | Output vo | oltage | 0 | Vcc | V | | | | V _{CC} =1.65V | | -4 | | | | | Vcc=2.3V | | -8 | | | Іон | High-level output current | V _{CC} =3V | | -16 | mA | | | | | | -24 | - | | | | V _{CC} =4.5V | | -32 | | | | | V _{CC} =1.65V | | 4 | | | | | V _{CC} =2.3V | | 8 | | | loL | Low-level output current | \/ -2\/ | | 16 | mA | | | | V _{CC} =3V | | 24 | | | | | V _{CC} =4.5V | | 32 | | | TA | Operating free-air | r temperature | -40 | 125 | $^{\circ}$ | ⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. ## **Electrical Characteristics** over recommended operating free-air temperature range (unless otherwise noted) | Dovemeter | Test Conditions | V | | -40°C to 85°C | ; | _ | 40°C to 125° | C C | l lait | |---|--|--------------------|---------|---------------|------|----------------------|--------------|------|--------| | Parameter | Test Conditions | Vcc | Min | Тур | Max | Min | Тур | Max | Unit | | | | 1.65 V | 0.7 | | 1.4 | 0.7 | | 1.4 | | | V_{T+} | | 2.3 V | 1 | | 1.7 | 1 | | 1.7 | | | Positive-going input threshold |)
H | 3 V | 1.3 | | 2 | 1.3 | | 2 | ٧ | | voltage | | 4.5 V | 1.9 | | 3.1 | 1.9 | | 3.1 | | | | | 5.5 V | 2.2 | | 3.7 | 2.2 | | 3.7 | | | | | 1.65 V | 0.25 | | 0.7 | 0.25 | | 0.7 | | | V_{T-} | | 2.3 V | 0.4 | | 1 | 0.4 | | 1 | | | Negative-going input threshold | g
d | 3 V | 0.8 | | 1.3 | 0.8 | | 1.3 | V | | voltage | | 4.5 V | 1.1 | | 2 | 1.1 | | 2 | | | | | 5.5 V | 1.4 | | 2.5 | 1.4 | | 2.5 | | | | | 1.65 V | 0.3 | | 1 | 0.3 | | 1 | | | | | 2.3 V | 0.4 | | 1 | 0.4 | | 1 | | | ΔV_T Hysteresis $(V_{T+} - V_{T-})$ | S | 3 V | 0.5 | | 1 | 0.5 | | 1 | V | | (*** ***) | | 4.5 V | 0.6 | | 1 | 0.6 | | 1 | | | | | 5.5 V | 0.7 | | 1.1 | 0.7 | | 1.1 | | | | I _{OH} =– 100 μA | 1.65 V to
5.5 V | Vcc-0.1 | | | V _{CC} -0.1 | | | V | | | I _{OH} =-4 mA | 1.65 V | 1.2 | | | 1.2 | | | | | V _{OH} | I _{OH} =–8 mA | 2.3 V | 1.9 | | | 1.9 | | | | | VOH | I _{ОН} =— 16 mA | 2.1/ | 2.4 | | | 2.4 | | | | | | I _{ОН} =-24 mA | 3 V | 2.3 | | | 2.3 | | | | | | I _{ОН} =-32 mA | 4.5 V | 3.8 | | | 3.8 | | | | | | I _{OL} =100 μA | 1.65 V to
5.5 V | | | 0.1 | | | 0.1 | | | | I _{OL} =4 mA | 1.65 V | | | 0.45 | | | 0.45 | | | Vol | I _{OL} =8 mA | 2.3 V | | | 0.3 | | | 0.3 | V | | VOL | I _{OL} =16 mA | 2.1/ | | | 0.4 | | | 0.4 | | | | I _{OL} =24 mA | 3 V | | | 0.55 | | | 0.55 | | | | I _{OL} =32 mA | 4.5 V | | | 0.55 | | | 0.55 | | | lı İnp | out V _I =5.5 V or GND | 0 to 5.5 V | | | ±5 | | | ±5 | μА | | l _{off} | V ₁ or V ₀ =5.5 V | | | | ±10 | | | ±10 | μΑ | | lα | V _I =5.5 V or GND,
l _O =0 | | | | 10 | | | 10 | μА | | Δlcc | One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND | | | | 500 | | | 500 | μА | | Ci | V _I =V _{CC} or GND | | | 5 | | | 5 | | pF | ⁽¹⁾ All unused digital inputs of the device must be held at V_{cc} or GND to ensure proper device operation. ### **Electrical Characteristics** Vcc=5.0V or 3.3V, Typical values are at T_A=+25°C. (unless otherwise noted) | | | | | | | -40°C t | o 125°C | | | | | |-----------------|--------------|-------------|-----|-----------------|-----|---------------|---------|----------------|--------------------------|--------------|------| | Parameter | From (Input) | To (Output) | | :1.8 V
.15 V | | 2.5 V
.2 V | | :3.3 V
:3 V | V _{CC} :
± 0 | =5 V
.5 V | Unit | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{pd} | A | Y | 3.9 | 10.5 | 1.9 | 6.2 | 2.2 | 5.9 | 1.5 | 4.8 | ns | T_A=25°C | Parameter | | Test Conditions | Vcc=1.8 V | Vcc=2.5 V | Vcc=3.3 V | Vcc=5 V | Unit | |-----------------|-------------------------------|-----------------|-----------|-----------|-----------|---------|------| | | arameter | rest conditions | Тур | Тур | Тур | Тур | Onic | | C _{pd} | Power dissipation capacitance | f=10 MHz | 20 | 30 | 35 | 50 | pF | ## **Typical Characteristics** Over recommended operating free-air temperature range, C_L=30 pF or 50 pF (unless otherwise noted). ## **Parameter Measurement Information** | TEST | S1 | |------------------------------------|------------| | T _{PHL} /T _{PLH} | OPEN | | T _{PLZ} /T _{PZL} | V_{LOAD} | | T _{PHZ} /T _{PZH} | GND | ## **Parameter Measurement Information(Continued)** | Vcc | INP | INPUTS | | Vican | V _{LOAD} C _L | | VΔ | |------------|-----|--------------------------------|--------------------|-------------------|----------------------------------|------|-------| | VCC | Vı | T _f /T _f | V _M | V LOAD | OL | R∟ | VΔ | | 1.8V±0.15V | Vcc | ≤2ns | V _{CC} /2 | 2×V _{CC} | 30pF | 1kΩ | 0.15V | | 2.5V±0.15V | Vcc | ≤2ns | Vcc/2 | 2×V _{CC} | 30pF | 500Ω | 0.15V | | 3.3V±0.15V | 3V | ≤2.5ns | 1.5V | 6V | 50pF | 500Ω | 0.3V | | 5V±0.15V | Vcc | ≤2.5ns | V _{CC} /2 | 2×V _{CC} | 50pF | 500Ω | 0.3V | **Propagation Delay** for Output and Inverted Output **Enable and Disable Times** Low-And High-Level Enabling - Notes:A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. - D. The outputs are measured one at a time, with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} . Waveform 2 is for an output with internal conditions such that the F. tpzl and tpzh are the same as ten. output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z =50. - G. tplh and tphl are the same as tpd. - H. All parameters and waveforms are not applicable to all device. ## **Feature Description** The device is designed for 1.65V to 5.5V V_{CC} operation and it allows down voltage translation from 5V to 3.3V, or 3.3V to 1.8V. The input voltage of SN74LVC1G17 accepts to 5.5V. The SN74LVC1G17 has power-down protection (off) and Schmitt-trigger input. loff feature allows voltage on the inputs and outputs when Vcc is 0 V, and is able to reduce leakage when Vcc is 0 V. Schmitt-Trigger input can improve the noise immunity capability #### **Device Functional Modes** | Input A | Output Y | |---------|----------| | Н | Н | | L | L | ## **Application Information** The SN74LVC1G17 is a high drive CMOS device that can be used for a multitude of buffer type functions where the input is slow or noisy. It can produce 24 mA of drive current at 3.3 V making it Ideal for driving multiple outputs and good for high-speed applications up to 100 MHz. The inputs are 5.5 V tolerant allowing it to translate down to VCC. channel input elements, such as push buttons or rotary knobs, offer simple ways to interact with electronic systems. Typically, these elements have recoil or bouncing, where the mechanical element makes and breaks contact multiple times during human interaction. This bouncing can cause one or more repeated signals to be passed, triggering multiple actions when only a single input was intended. One potential solution to mitigating these multiple inputs is by utilizing a Schmitt-trigger to create a debounce circuit. ## **Typical Power Button Circuit** ## Package Outline SOT23-5 Recommended Land Pattern (Unit: mm) | O. mala a l | Dimensions I | n Millimeters | Dimensions | s In Inches | |-------------|--------------|---------------|------------|-------------| | Symbol | Min | Max | Min | Max | | Α | 1.050 | 1.250 | 0.041 | 0.049 | | A1 | 0.000 | 0.100 | 0.000 | 0.004 | | A2 | 1.050 | 1.150 | 0.041 | 0.045 | | b | 0.300 | 0.500 | 0.012 | 0.020 | | С | 0.100 | 0.200 | 0.004 | 0.008 | | D | 2.820 | 3.020 | 0.111 | 0.119 | | E | 1.500 | 1.700 | 0.059 | 0.067 | | E1 | 2.650 | 2.950 | 0.104 | 0.116 | | е | 0.950 | BSC | 0.037 | BSC | | e1 | 1.800 | 2.000 | 0.071 | 0.079 | | L | 0.300 | 0.600 | 0.012 | 0.024 | | L1 | 0.600 | REF | 0.024 | REF | | θ | 0° | 8° | 0° | 8° | # Package Outline SC70-5 | aymh al | Dimension I | n Millimeters | Dimension | s In Inches | |---------|-------------|---------------|-----------|-------------| | symbol | Min | Max | Min | Max | | Α | 0.900 | 1.100 | 0.035 | 0.043 | | A1 | 0.000 | 0.100 | 0.000 | 0.004 | | A2 | 0.900 | 1.000 | 0.035 | 0.039 | | b | 0.150 | 0.350 | 0.006 | 0.014 | | С | 0.110 | 0.175 | 0.004 | 0.007 | | D | 2.000 | 2.200 | 0.079 | 0.087 | | E | 1.150 | 1.350 | 0.045 | 0.053 | | E1 | 2.150 | 2.450 | 0.085 | 0.096 | | е | 0.650 | TYP | 0.026 | STYP | | e1 | 1.200 | 1.400 | 0.047 | 0.055 | | L | 0.525REF | | 0.02 | IREF | | L1 | 0.260 | 0.460 | 0.010 | 0.018 | | θ | 0° | 8° | 0° | 8° | ## Important statement: - ➤ WDJ Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information. - Any and all WDJ Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, orother applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consultwithyour WDJ Semiconductor representative nearest you before using any WDJ Semiconductor products describedor contained herein in such applications. - >WDJ Semiconductor Co,Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to otherproperty. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. - ➤In the event that any or all WDJ Semiconductor products (including technical data, services) described or contained hereinare controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law. - >WDJ Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all WDJ Semiconductor products described or contained herein. - > Specifications of any and all WDJ Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in thecustomer's products or equipment.