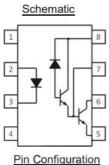
恒拓电子 HENGTUO ELECTRONICS

HT series

Photo Coupler Product Specification


HT-6N138

HT-6N139

■ Package

- No Connection
- 1. No Connection
- 2. Anode
- 3. Cathode
- 4. No Connection
- 5. Gnd
- 6. Vout
- 7. VB
- 8. Vcc

■ Description

The 6N138 and 6N139 devices each consists of an infrared emitting diode, optically coupled to a high gain split Darlington photo detector. They provide extremely high current transfer ratio between input and output, with access to a base terminal to adjust the gain bandwidth. These devices are packaged in an 8-pin DIP package and available in wide-lead spacing and SMD options.

■ Features

- High current transfer ratio–2000% typical
- High isolation voltage between input and output (Viso=5000 Vrms)
- Guaranteed performance from 0°C to 70°C
- Pb free and RoHS compliant.
- UL and CUL approved
- CQC approved
- VDE approved

■ Applications

- Digital logic ground isolation
- RS-232C line receiver
- Low input current line receiver
- Microprocessor bus isolation
- Current loop receiver

■ Product Nomenclature

The product name is designated as below:

HT-6N13X -X X- X X- <u>XX</u>

① ② ③ ④ ⑤

Designation:

HT =Hengtuo Technology Co.,LTD.

6N13X= Product Series

- ① = Lead form option₍₁₎
- 2 = Tape and Reel option₍₂₎
- ③ = VDE order option(fixed code "V")
- 4 = Halogen free option(fixed code"G")
- ⑤= Customer code

Notes

1. Lead form option:

Symbol	Description
S1	DIP-S1
М	DIP-M
NONE	DIP/SOP Normal

2. Tape and Reel option:

Symbol	Description
TP&TP1	Tape and Reel Type
NONE	DIP&SOP Type

■ Marking Information

Designation:

HT denotes Hengtuo
6N138 denotes Device
YY denotes year code
WW denotes week code
V denotes VDE

■ Maximum Ratings(Ta=25°C)

	Parameter	Symbol	Values	Unit
Input	Forward Current	l _F	20	mA

	Peak forward curr 1ms P.W)	ent (50% duty,	I _{FP}	40	mA	
	Peak transient Current (≤1µs P.W,300pps)		IFtrans	1	Α	
	Reverse voltage		V_{R}	5	V	
	Power dissipation		P _{IN}	45	mW	
	Power dissipation		Pc	85	mW	
	Output current		V _{ECO}	50	mA	
	Emitter-Base Rev	erse Voltage	VER	0.5	V	
Output	Output voltage -	6N138	\/ -	-0.5 to 7	V	
		6N139	Vo	-0.5 to 18	V	
	Cupply voltage	6N138	\/	-0.5 to 7	V	
	Supply voltage	6N139	V_{CC}	-0.5 to 18	V	
Isolation voltage ⁽¹⁾			V _{ISO}	5000	V rms	
Operating temperature			T _{OPR}	-40 ~ +85	°C	
Storage temperature			T _{STG}	-55 ~ +125	°C	
Soldering	temperature (2)		T _{SOL}	260	°C	

Notes:

(1). AC for 1 minute, R.H.= $40 \sim 60\%$ R.H. In this test, pins 1, 2, 3 & 4 are shorted together, and pins 5, 6, 7 & 8 are shorted together. (2).For 10 seconds

■ Electronic Optical Characteristics

(TA = 0 to 70°C unless specified otherwise)

F	Paramete	r	Symbol	Min.	Тур.	Max.	Unit	Conditon
	Forward Vo	oltage	V_{F}	-	1.3	1.7	V	I _F =1.6mA
Input	Reverse voltage		V_{R}	5.0	-	-	V	I _R =10µA, T _A =25°C
mpat	Temperature coefficient of forward voltage		ΔVF/ΔΤΑ	-	-1.8	-	mV/°C	IF =1.6mA
	Logic High 6N Output 6N	6N138	L	-	0.01	100	^	IF=0mA, Vo=Vcc=18V
		6N139	- Іон -	-	-	250	- μA	
Output	Logic Low	6N138						IF=1.6mA,
Output	Supply Current	6N139	Iccl	-	0.6	1.5	mA	V _O =Open,VC C=18V
	Logic High		- Іссн	_	0.05	10	μA	IF=0mA ,
	Supply	6N139	2011	2/14			1	V _O =Open,

Current VCC=18V

■ Transfer Characteristics

(Ta=0 to 70°C unless specified otherwise, Vcc=4.5V)

Paramete	er	Symbol	Min.	Тур.	Max.	Unit	Conditon							
	6N120		400	2500	-		$I_F = 0.5 \text{mA},$ $V_O = 0.4 \text{V},$ $V_{CC} = 4.5 \text{V}$							
Current Transfer Ratio	6N139	CTR	500	2000	-	- % -	I _F = 1.6mA, V _O = 0.4V,							
	6N138		300	2000	-		$V_{CC} = 4.5V$							
	6N139 ow Output		-	0.05	0.4		$I_F = 0.5 \text{mA},$ $IO = 2 \text{mA},$ $V_{CC} = 4.5 \text{V}$							
		6N139		-	0.09	0.4	_	$I_F = 1.6 \text{mA},$ $I_O = 8 \text{mA},$ $V_{CC} = 4.5 \text{V}$						
Logic Low Output Voltage			OINTOS	ON 139	ON139	ON 139	011139			V _{OL}	-	0.12	0.4	V
			-	0.17	0.4	-	$I_F = 12mA,$ $I_O = 24mA,$ $V_{CC} = 4.5V$							
	6N138		-	0.06	0.4		$I_F = 1.6 \text{mA},$ $I_O = 4.8 \text{mA},$ $V_{CC} = 4.5 \text{V}$							

■ Switching Characteristics (Ta=0 to 70°C unless specified otherwise, V_{cc}=5V)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditon
		_	-	5	25		I_F = 0.5mA , R_L =4.7k Ω , T_A =25°C
	CNIAGO		-	-	30		I_F = 0.5mA , R_L =4.7k Ω
Propagati on Delay Time to	6N139	- Т _{РНL} _	-	0.2	1	 _ μs _	I_F = 12mA , R_L =270 Ω , T_A =25°C
Logic Low (Fig. 13)			-	-	2		$I_F = 12mA$, $R_L = 270\Omega$
,	6N138	_	-	35	10		$I_F = 1.6 \text{mA}$, $R_L = 2.2 \text{k}\Omega$, $T_A = 25 ^{\circ}\text{C}$
		-			15		I_F = 1.6mA , R_L =2.2k Ω
			-	16	60		I_F = 0.5mA , R_L =4.7k Ω , T_A =25°C
D "	6N139	T _{PLH}	-	-	90		$I_F = 0.5 \text{mA}$, $R_L = 4.7 \text{k}\Omega$
Propagati on Delay Time to			-	1.7	7		I_F = 12mA , R_L =270 Ω , T_A =25°C
Logic High (Fig.	6N138		-	-	10		$I_F = 12mA$, $R_L = 270\Omega$
13)			-	8	35		I_F = 1.6mA , R_L =2.2k Ω , T_A =25°C
		_	-		50		$I_F = 1.6 \text{mA}$, $R_L = 2.2 \text{k}\Omega$
Common Mode Transient Immunity at Logic High (Fig. 14) *3		Смн	1000	-	-	V/µs	$I_F = 0mA,$ $V_{CM} = 10V_{p-p},$ $R_L = 2.2K\Omega,$ $T_A = 25^{\circ}C$
Common Mode Transient Immunity at Logic Low (Fig. 14)*3		Смь	1000	-	-	V/µs	$\begin{split} I_F &= 1.6 mA \;, \\ V_{CM} &= 10 V_{p\text{-}p}, \\ R_L &= 2.2 K\Omega, \\ T_A &= 25 ^{\circ} C \end{split}$

* Typical values at Ta = 25°C

■ Typical Electro-Optical Characteristics Curves

Fig.1 LED Forward Current vs. Forward Voltage

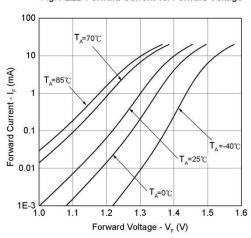


Fig.3 Output Current vs. Output Voltage

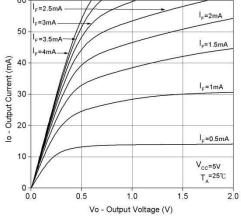


Fig.5 Current Transfer Ratio vs. Forward Current

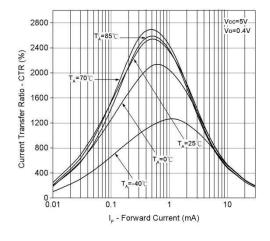


Fig.2 LED Forward Voltage vs. Temperature

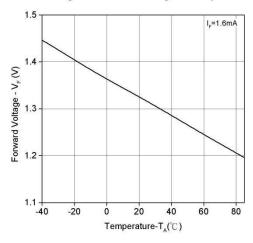


Fig.4 Output Current vs. Input Diode Forward Current

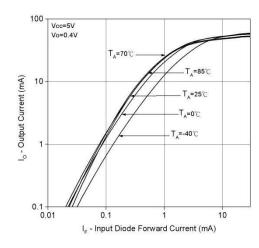
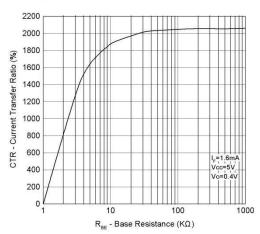
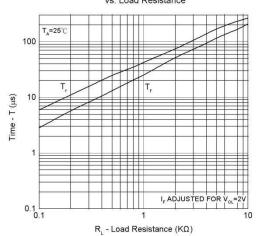



Fig.6 Current Transfer Ratio vs. Base-Emitter Resistance



HT-6N138 HT-6N139 Photo Coupler

Fig.7 Non-saturated Rise nand Fall Times vs. Load Resistance

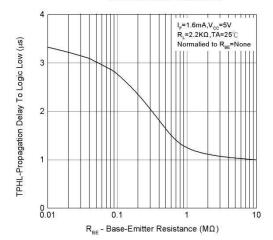
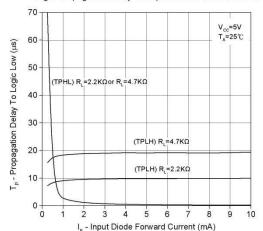



Fig.9 Propagation Delay vs. Input Diode Forward Current

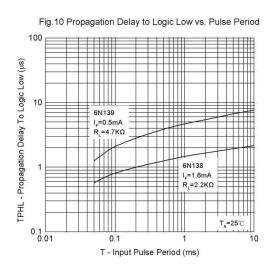


Fig.11 Propagation Delay vs. Temperature

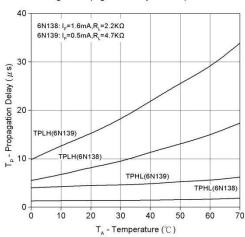
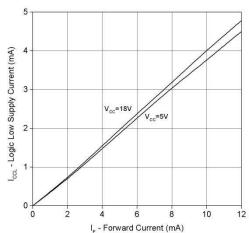



Fig.12 Logic Low Supply Current vs. Input Diode Forward Current

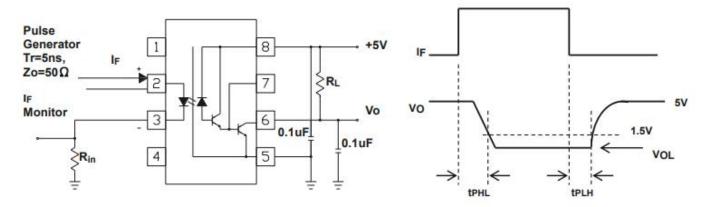
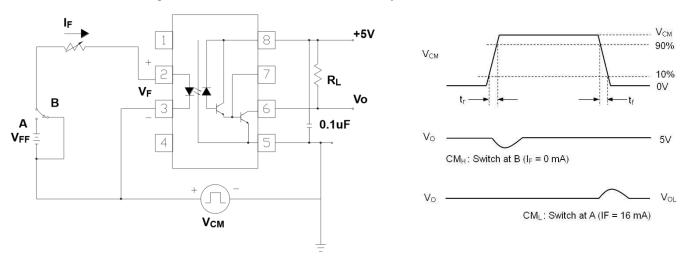
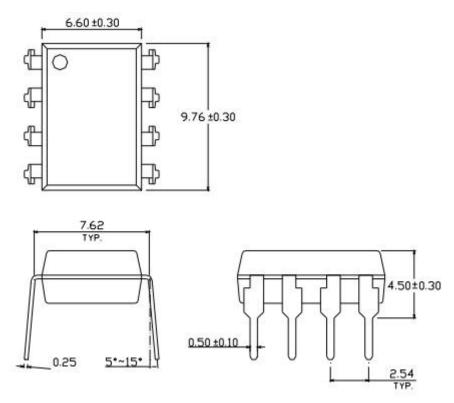
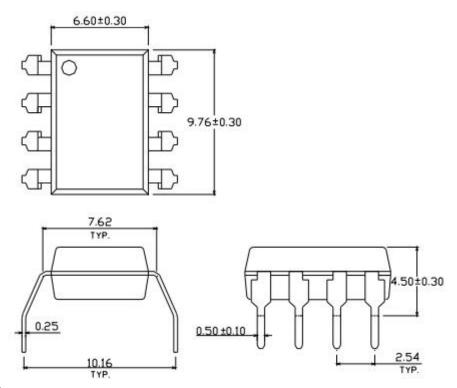



Fig. 14 Common Mode Transient Immunity Test Circuit and Waveform

Note:

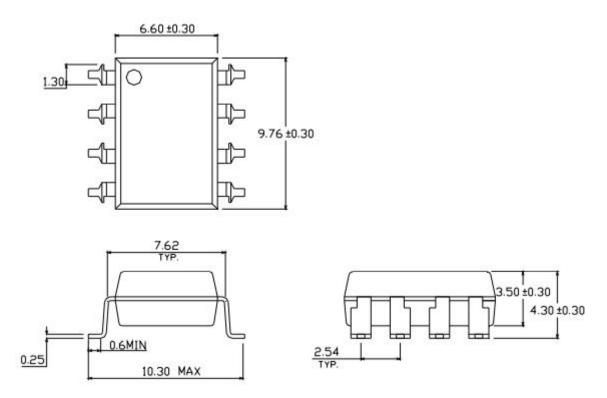

*3 Common mode transient immunity in logic high level is the maximum tolerable (positive) dVcm/dt on the leading edge of the common mode pulse signal VCM, to assure that the output will remain in a logic high state (i.e., VO > 2.0V).

Common mode transient immunity in logic low level is the maximum tolerable (negative) dVcm/dt on the trailing edge of the common mode pulse signal, VCM, to assure that the output will remain in a logic low state (i.e., VO < 0.8V).

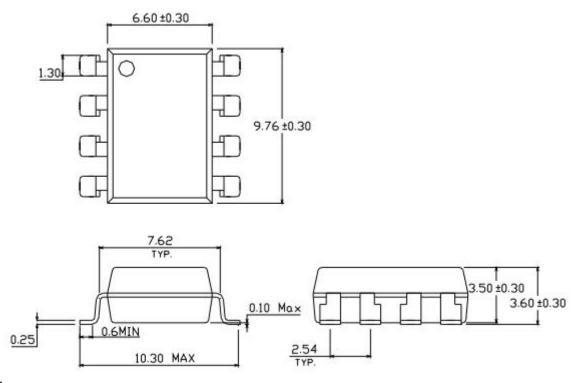


■ Outline Dimension

Standard DIP Type

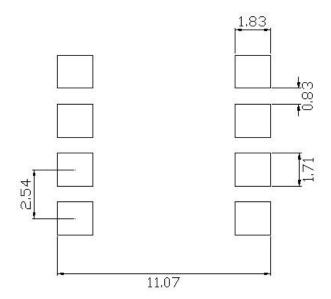


Option M Type



Option S Type

Option S1 Type

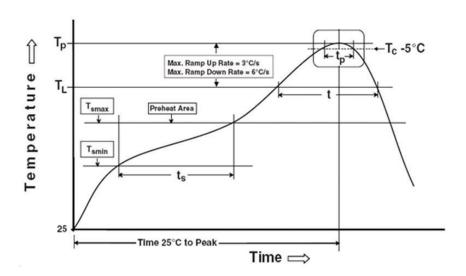


Unit: mm

Tolerance: ±0.1mm

■ Recommended solder pad Design

Unit: mm


Tolerance: ±0.1mm

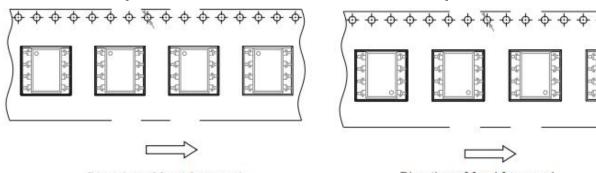
■ Temperature Profile Of Soldering

1. IR Reflow soldering (IPC/JEDEC J-STD-020D compliant)

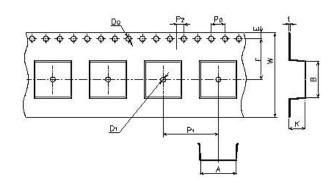
Profile item	Conditon
Preheat	
Temperature min (T _{smin})	150 °C
Temperature max (T _{smax})	200°C
Time $(T_{smin} \text{ to } T_{smax}) (t_s)$	60-120 seconds
Average ramp-up rate $(T_{smax}$ to $T_p)$	3 °C/second max
Other	
Liquidus Temperature (T∟)	217 °C
Time above Liquidus Temperature (t∟)	60-100 sec
Peak Temperature (T _P)	260°C
Time within 5 °C of Actual Peak Temperature: T _P - 5°C	30 s
Ramp- Down Rate from Peak Temperature	6°C /second max.
Time 25°C to peak temperature	8 minutes max.
Reflow times	3 times

Notes:

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.


■ Packing

Tape and Reel



Direction of feed from reel

Direction of feed from reel

Tape dimension

Deminsion/mm	Α	В	Do	D1	E	F
Packagetype:S	10.4±0.1	10.0±0.1	1.5+0.1/-0	1.5±0.25	1.75±0.1	7.5±0.1

Deminsion/mm	Ро	P1	P2	t	W	K
Packagetype:S	4.0±0.1	12.0±0.1	2.0±0.05	0.4±0.05	16.0±0.3	4.5±0.1

■ Attention:

- Hengtuo is continually improving the quality, reliability, function or design and Hengtuo reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.